blob: 7c9e9c51829debff3ab7caaaedd864a7ee541778 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COMPANION_H
#define EIGEN_COMPANION_H
// This file requires the user to include
// * Eigen/Core
// * Eigen/src/PolynomialSolver.h
#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename T>
T ei_radix(){ return 2; }
template <typename T>
T ei_radix2(){ return ei_radix<T>()*ei_radix<T>(); }
template<int Size>
struct ei_decrement_if_fixed_size
{
enum {
ret = (Size == Dynamic) ? Dynamic : Size-1 };
};
#endif
template< typename _Scalar, int _Deg >
class ei_companion
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
enum {
Deg = _Deg,
Deg_1=ei_decrement_if_fixed_size<Deg>::ret
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, Deg, 1> RightColumn;
//typedef DiagonalMatrix< Scalar, Deg_1, Deg_1 > BottomLeftDiagonal;
typedef Matrix<Scalar, Deg_1, 1> BottomLeftDiagonal;
typedef Matrix<Scalar, Deg, Deg> DenseCompanionMatrixType;
typedef Matrix< Scalar, _Deg, Deg_1 > LeftBlock;
typedef Matrix< Scalar, Deg_1, Deg_1 > BottomLeftBlock;
typedef Matrix< Scalar, 1, Deg_1 > LeftBlockFirstRow;
public:
EIGEN_STRONG_INLINE const _Scalar operator()( int row, int col ) const
{
if( m_bl_diag.rows() > col )
{
if( 0 < row ){ return m_bl_diag[col]; }
else{ return 0; }
}
else{ return m_monic[row]; }
}
public:
template<typename VectorType>
void setPolynomial( const VectorType& poly )
{
const int deg = poly.size()-1;
m_monic = -1/poly[deg] * poly.head(deg);
//m_bl_diag.setIdentity( deg-1 );
m_bl_diag.setOnes(deg-1);
}
template<typename VectorType>
ei_companion( const VectorType& poly ){
setPolynomial( poly ); }
public:
DenseCompanionMatrixType denseMatrix() const
{
const int deg = m_monic.size();
const int deg_1 = deg-1;
DenseCompanionMatrixType companion(deg,deg);
companion <<
( LeftBlock(deg,deg_1)
<< LeftBlockFirstRow::Zero(1,deg_1),
BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
, m_monic;
return companion;
}
protected:
/** Helper function for the balancing algorithm.
* \returns true if the row and the column, having colNorm and rowNorm
* as norms, are balanced, false otherwise.
* colB and rowB are repectively the multipliers for
* the column and the row in order to balance them.
* */
bool balanced( Scalar colNorm, Scalar rowNorm,
bool& isBalanced, Scalar& colB, Scalar& rowB );
/** Helper function for the balancing algorithm.
* \returns true if the row and the column, having colNorm and rowNorm
* as norms, are balanced, false otherwise.
* colB and rowB are repectively the multipliers for
* the column and the row in order to balance them.
* */
bool balancedR( Scalar colNorm, Scalar rowNorm,
bool& isBalanced, Scalar& colB, Scalar& rowB );
public:
/**
* Balancing algorithm from B. N. PARLETT and C. REINSCH (1969)
* "Balancing a matrix for calculation of eigenvalues and eigenvectors"
* adapted to the case of companion matrices.
* A matrix with non zero row and non zero column is balanced
* for a certain norm if the i-th row and the i-th column
* have same norm for all i.
*/
void balance();
protected:
RightColumn m_monic;
BottomLeftDiagonal m_bl_diag;
};
template< typename _Scalar, int _Deg >
inline
bool ei_companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
bool& isBalanced, Scalar& colB, Scalar& rowB )
{
if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
else
{
//To find the balancing coefficients, if the radix is 2,
//one finds \f$ \sigma \f$ such that
// \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
// then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
// and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
rowB = rowNorm / ei_radix<Scalar>();
colB = Scalar(1);
const Scalar s = colNorm + rowNorm;
while (colNorm < rowB)
{
colB *= ei_radix<Scalar>();
colNorm *= ei_radix2<Scalar>();
}
rowB = rowNorm * ei_radix<Scalar>();
while (colNorm >= rowB)
{
colB /= ei_radix<Scalar>();
colNorm /= ei_radix2<Scalar>();
}
//This line is used to avoid insubstantial balancing
if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
{
isBalanced = false;
rowB = Scalar(1) / colB;
return false;
}
else{
return true; }
}
}
template< typename _Scalar, int _Deg >
inline
bool ei_companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
bool& isBalanced, Scalar& colB, Scalar& rowB )
{
if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
else
{
/**
* Set the norm of the column and the row to the geometric mean
* of the row and column norm
*/
const _Scalar q = colNorm/rowNorm;
if( !ei_isApprox( q, _Scalar(1) ) )
{
rowB = ei_sqrt( colNorm/rowNorm );
colB = Scalar(1)/rowB;
isBalanced = false;
return false;
}
else{
return true; }
}
}
template< typename _Scalar, int _Deg >
void ei_companion<_Scalar,_Deg>::balance()
{
EIGEN_STATIC_ASSERT( 1 < Deg, YOU_MADE_A_PROGRAMMING_MISTAKE );
const int deg = m_monic.size();
const int deg_1 = deg-1;
bool hasConverged=false;
while( !hasConverged )
{
hasConverged = true;
Scalar colNorm,rowNorm;
Scalar colB,rowB;
//First row, first column excluding the diagonal
//==============================================
colNorm = ei_abs(m_bl_diag[0]);
rowNorm = ei_abs(m_monic[0]);
//Compute balancing of the row and the column
if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
{
m_bl_diag[0] *= colB;
m_monic[0] *= rowB;
}
//Middle rows and columns excluding the diagonal
//==============================================
for( int i=1; i<deg_1; ++i )
{
// column norm, excluding the diagonal
colNorm = ei_abs(m_bl_diag[i]);
// row norm, excluding the diagonal
rowNorm = ei_abs(m_bl_diag[i-1]) + ei_abs(m_monic[i]);
//Compute balancing of the row and the column
if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
{
m_bl_diag[i] *= colB;
m_bl_diag[i-1] *= rowB;
m_monic[i] *= rowB;
}
}
//Last row, last column excluding the diagonal
//============================================
const int ebl = m_bl_diag.size()-1;
VectorBlock<RightColumn,Deg_1> headMonic( m_monic, 0, deg_1 );
colNorm = headMonic.array().abs().sum();
rowNorm = ei_abs( m_bl_diag[ebl] );
//Compute balancing of the row and the column
if( !balanced( colNorm, rowNorm, hasConverged, colB, rowB ) )
{
headMonic *= colB;
m_bl_diag[ebl] *= rowB;
}
}
}
#endif // EIGEN_COMPANION_H