merge
diff --git a/test/svd_common.h b/test/svd_common.h
index e902d23..347ea80 100644
--- a/test/svd_common.h
+++ b/test/svd_common.h
@@ -38,7 +38,6 @@
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
-
VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
@@ -90,31 +89,31 @@
SolutionType x = svd.solve(rhs);
+ // evaluate normal equation which works also for least-squares solutions
+ if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
+ {
+ // This test is not stable with single precision.
+ // This is probably because squaring m signicantly affects the precision.
+ VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
+ }
+
RealScalar residual = (m*x-rhs).norm();
// Check that there is no significantly better solution in the neighborhood of x
if(!test_isMuchSmallerThan(residual,rhs.norm()))
{
- // If the residual is very small, then we have an exact solution, so we are already good.
- for(int k=0;k<x.rows();++k)
+ // ^^^ If the residual is very small, then we have an exact solution, so we are already good.
+ for(Index k=0;k<x.rows();++k)
{
SolutionType y(x);
- y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
+ y.row(k) = (1.+2*NumTraits<RealScalar>::epsilon())*x.row(k);
RealScalar residual_y = (m*y-rhs).norm();
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
- y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
+ y.row(k) = (1.-2*NumTraits<RealScalar>::epsilon())*x.row(k);
residual_y = (m*y-rhs).norm();
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
}
}
-
- // evaluate normal equation which works also for least-squares solutions
- if(internal::is_same<RealScalar,double>::value)
- {
- // This test is not stable with single precision.
- // This is probably because squaring m signicantly affects the precision.
- VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
- }
}
// check minimal norm solutions, the inoput matrix m is only used to recover problem size
@@ -234,11 +233,49 @@
Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
for(Index k=0; k<diagSize; ++k)
d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
- m = Matrix<Scalar,Dynamic,Dynamic>::Random(m.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,m.cols());
+
+ bool dup = internal::random<int>(0,10) < 3;
+ bool unit_uv = internal::random<int>(0,10) < (dup?7:3); // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors
+
+ // duplicate some singular values
+ if(dup)
+ {
+ Index n = internal::random<Index>(0,d.size()-1);
+ for(Index i=0; i<n; ++i)
+ d(internal::random<Index>(0,d.size()-1)) = d(internal::random<Index>(0,d.size()-1));
+ }
+
+ Matrix<Scalar,Dynamic,Dynamic> U(m.rows(),diagSize);
+ Matrix<Scalar,Dynamic,Dynamic> VT(diagSize,m.cols());
+ if(unit_uv)
+ {
+ // in very rare cases let's try with a pure diagonal matrix
+ if(internal::random<int>(0,10) < 1)
+ {
+ U.setIdentity();
+ VT.setIdentity();
+ }
+ else
+ {
+ createRandomPIMatrixOfRank(diagSize,U.rows(), U.cols(), U);
+ createRandomPIMatrixOfRank(diagSize,VT.rows(), VT.cols(), VT);
+ }
+ }
+ else
+ {
+ U.setRandom();
+ VT.setRandom();
+ }
+
+ m = U * d.asDiagonal() * VT;
+
// cancel some coeffs
- Index n = internal::random<Index>(0,m.size()-1);
- for(Index i=0; i<n; ++i)
- m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
+ if(!(dup && unit_uv))
+ {
+ Index n = internal::random<Index>(0,m.size()-1);
+ for(Index i=0; i<n; ++i)
+ m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
+ }
}
diff --git a/unsupported/Eigen/src/BDCSVD/BDCSVD.h b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
index d5e8140..e8e7955 100644
--- a/unsupported/Eigen/src/BDCSVD/BDCSVD.h
+++ b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
@@ -23,6 +23,10 @@
// #define EIGEN_BDCSVD_SANITY_CHECKS
namespace Eigen {
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
+#endif
+
template<typename _MatrixType> class BDCSVD;
namespace internal {
@@ -80,6 +84,7 @@
typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
typedef Matrix<RealScalar, Dynamic, 1> VectorType;
typedef Array<RealScalar, Dynamic, 1> ArrayXr;
+ typedef Array<Index,1,Dynamic> ArrayXi;
/** \brief Default Constructor.
*
@@ -155,19 +160,16 @@
void allocate(Index rows, Index cols, unsigned int computationOptions);
void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
- void computeSingVals(const ArrayXr& col0, const ArrayXr& diag, VectorType& singVals,
- ArrayXr& shifts, ArrayXr& mus);
- void perturbCol0(const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals,
- const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat);
- void computeSingVecs(const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals,
- const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V);
+ void computeSingVals(const ArrayXr& col0, const ArrayXr& diag, const ArrayXi& perm, VectorType& singVals, ArrayXr& shifts, ArrayXr& mus);
+ void perturbCol0(const ArrayXr& col0, const ArrayXr& diag, const ArrayXi& perm, const VectorType& singVals, const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat);
+ void computeSingVecs(const ArrayXr& zhat, const ArrayXr& diag, const ArrayXi& perm, const VectorType& singVals, const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V);
void deflation43(Index firstCol, Index shift, Index i, Index size);
void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
static void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
- static RealScalar secularEq(RealScalar x, const ArrayXr& col0, const ArrayXr& diag, const ArrayXr& diagShifted, RealScalar shift, Index n);
+ static RealScalar secularEq(RealScalar x, const ArrayXr& col0, const ArrayXr& diag, const ArrayXi &perm, const ArrayXr& diagShifted, RealScalar shift);
protected:
MatrixXr m_naiveU, m_naiveV;
@@ -234,6 +236,9 @@
template<typename MatrixType>
BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << "\n\n\n======================================================================================================================\n\n\n";
+#endif
allocate(matrix.rows(), matrix.cols(), computationOptions);
using std::abs;
@@ -478,9 +483,23 @@
m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
+#endif
// Second part: try to deflate singular values in combined matrix
deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
-
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
+ std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
+ std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
+ std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
+ static int count = 0;
+ std::cout << "# " << ++count << "\n\n";
+ assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
+// assert(count<681);
+// assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
+#endif
+
// Third part: compute SVD of combined matrix
MatrixXr UofSVD, VofSVD;
VectorType singVals;
@@ -522,13 +541,24 @@
ArrayXr diag = m_computed.block(firstCol, firstCol, n, n).diagonal();
diag(0) = 0;
- // compute singular values and vectors (in decreasing order)
+ // Allocate space for singular values and vectors
singVals.resize(n);
U.resize(n+1, n+1);
if (m_compV) V.resize(n, n);
if (col0.hasNaN() || diag.hasNaN()) { std::cout << "\n\nHAS NAN\n\n"; return; }
-
+
+ // Many singular values might have been deflated, the zero ones have been moved to the end,
+ // but others are interleaved and we must ignore them at this stage.
+ // To this end, let's compute a permutation skipping them:
+ Index actual_n = n;
+ while(actual_n>1 && diag(actual_n-1)==0) --actual_n;
+ Index m = 0; // size of the deflated problem
+ ArrayXi perm(actual_n);
+ for(Index k=0;k<actual_n;++k)
+ if(col0(k)!=0)
+ perm(m++) = k;
+ perm.conservativeResize(m);
ArrayXr shifts(n), mus(n), zhat(n);
@@ -539,12 +569,23 @@
#endif
// Compute singVals, shifts, and mus
- computeSingVals(col0, diag, singVals, shifts, mus);
+ computeSingVals(col0, diag, perm, singVals, shifts, mus);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
std::cout << " sing-val: " << singVals.transpose() << "\n";
std::cout << " mu: " << mus.transpose() << "\n";
std::cout << " shift: " << shifts.transpose() << "\n";
+
+ {
+ Index actual_n = n;
+ while(actual_n>1 && col0(actual_n-1)==0) --actual_n;
+ std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
+ std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
+ std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
+ std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
+ std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
+ }
#endif
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
@@ -554,24 +595,16 @@
#endif
// Compute zhat
- perturbCol0(col0, diag, singVals, shifts, mus, zhat);
+ perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << " zhat: " << zhat.transpose() << "\n";
- {
- Index actual_n = n;
- while(actual_n>1 && col0(actual_n-1)==0) --actual_n;
- std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
- std::cout << " check1: " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
- std::cout << " check2: " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
- std::cout << " check3: " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
- }
#endif
-
+
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
assert(zhat.allFinite());
#endif
- computeSingVecs(zhat, diag, singVals, shifts, mus, U, V);
+ computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
@@ -586,23 +619,48 @@
assert(m_computed.allFinite());
#endif
+ // Because of deflation, the singular values might not be completely sorted.
+ // Fortunately, reordering them is a O(n) problem
+ for(Index i=0; i<actual_n-1; ++i)
+ {
+ if(singVals(i)>singVals(i+1))
+ {
+ using std::swap;
+ swap(singVals(i),singVals(i+1));
+ U.col(i).swap(U.col(i+1));
+ if(m_compV) V.col(i).swap(V.col(i+1));
+ }
+ }
+
// Reverse order so that singular values in increased order
// Because of deflation, the zeros singular-values are already at the end
- Index actual_n = n;
- while(actual_n>1 && singVals(actual_n-1)==0) --actual_n;
singVals.head(actual_n).reverseInPlace();
U.leftCols(actual_n) = U.leftCols(actual_n).rowwise().reverse().eval(); // FIXME this requires a temporary
if (m_compV) V.leftCols(actual_n) = V.leftCols(actual_n).rowwise().reverse().eval(); // FIXME this requires a temporary
+
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
+ std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
+ std::cout << " * sing-val: " << singVals.transpose() << "\n";
+// std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
+#endif
}
template <typename MatrixType>
-typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayXr& col0, const ArrayXr& diag, const ArrayXr& diagShifted, RealScalar shift, Index n)
+typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayXr& col0, const ArrayXr& diag, const ArrayXi &perm, const ArrayXr& diagShifted, RealScalar shift)
{
- return 1 + (col0.square() / ((diagShifted - mu) )/( (diag + shift + mu))).head(n).sum();
+ Index m = perm.size();
+ RealScalar res = 1;
+ for(Index i=0; i<m; ++i)
+ {
+ Index j = perm(i);
+ res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
+ }
+ return res;
}
template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& diag,
+void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& diag, const ArrayXi &perm,
VectorType& singVals, ArrayXr& shifts, ArrayXr& mus)
{
using std::abs;
@@ -612,26 +670,16 @@
Index n = col0.size();
Index actual_n = n;
while(actual_n>1 && col0(actual_n-1)==0) --actual_n;
-// Index m = 0;
-// Array<Index,1,Dynamic> perm(actual_n);
-// {
-// for(Index k=0;k<actual_n;++k)
-// {
-// if(col0(k)!=0)
-// perm(m++) = k;
-// }
-// }
-// perm.conservativeResize(m);
-
+
for (Index k = 0; k < n; ++k)
{
if (col0(k) == 0 || actual_n==1)
{
// if col0(k) == 0, then entry is deflated, so singular value is on diagonal
// if actual_n==1, then the deflated problem is already diagonalized
- singVals(k) = diag(k);
+ singVals(k) = k==0 ? col0(0) : diag(k);
mus(k) = 0;
- shifts(k) = diag(k);
+ shifts(k) = k==0 ? col0(0) : diag(k);
continue;
}
@@ -650,8 +698,22 @@
// first decide whether it's closer to the left end or the right end
RealScalar mid = left + (right-left) / 2;
- RealScalar fMid = 1 + (col0.square() / ((diag + mid) * (diag - mid))).head(actual_n).sum();
-
+ RealScalar fMid = secularEq(mid, col0, diag, perm, diag, 0);
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << right-left << "\n";
+ std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n";
+ std::cout << " = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
+ << " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
+#endif
RealScalar shift = (k == actual_n-1 || fMid > 0) ? left : right;
// measure everything relative to shift
@@ -671,8 +733,8 @@
muCur = -(right - left) * 0.5;
}
- RealScalar fPrev = secularEq(muPrev, col0, diag, diagShifted, shift, actual_n);
- RealScalar fCur = secularEq(muCur, col0, diag, diagShifted, shift, actual_n);
+ RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
+ RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
if (abs(fPrev) < abs(fCur))
{
swap(fPrev, fCur);
@@ -682,20 +744,26 @@
// rational interpolation: fit a function of the form a / mu + b through the two previous
// iterates and use its zero to compute the next iterate
bool useBisection = fPrev*fCur>0;
- while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (max)(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
+ while (fCur!=0 && abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (max)(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
{
++m_numIters;
+ // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
RealScalar b = fCur - a / muCur;
-
+ // And find mu such that f(mu)==0:
+ RealScalar muZero = -a/b;
+ RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
+
muPrev = muCur;
fPrev = fCur;
- muCur = -a / b;
- fCur = secularEq(muCur, col0, diag, diagShifted, shift, actual_n);
+ muCur = muZero;
+ fCur = fZero;
+
if (shift == left && (muCur < 0 || muCur > right - left)) useBisection = true;
if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true;
+ if (abs(fCur)>abs(fPrev)) useBisection = true;
}
// fall back on bisection method if rational interpolation did not work
@@ -710,7 +778,7 @@
leftShifted = RealScalar(1)/NumTraits<RealScalar>::highest();
// I don't understand why the case k==0 would be special there:
// if (k == 0) rightShifted = right - left; else
- rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe
+ rightShifted = (k==actual_n-1) ? right : ((right - left) * 0.6); // theoretically we can take 0.5, but let's be safe
}
else
{
@@ -718,11 +786,11 @@
rightShifted = -RealScalar(1)/NumTraits<RealScalar>::highest();
}
- RealScalar fLeft = secularEq(leftShifted, col0, diag, diagShifted, shift, actual_n);
- RealScalar fRight = secularEq(rightShifted, col0, diag, diagShifted, shift, actual_n);
+ RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
+ RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- if(fLeft * fRight>=0)
+ if(!(fLeft * fRight<0))
std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n";
#endif
eigen_internal_assert(fLeft * fRight < 0);
@@ -730,7 +798,7 @@
while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (max)(abs(leftShifted), abs(rightShifted)))
{
RealScalar midShifted = (leftShifted + rightShifted) / 2;
- RealScalar fMid = secularEq(midShifted, col0, diag, diagShifted, shift, actual_n);
+ RealScalar fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
if (fLeft * fMid < 0)
{
rightShifted = midShifted;
@@ -762,28 +830,13 @@
// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
template <typename MatrixType>
void BDCSVD<MatrixType>::perturbCol0
- (const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals,
+ (const ArrayXr& col0, const ArrayXr& diag, const ArrayXi &perm, const VectorType& singVals,
const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat)
{
using std::sqrt;
Index n = col0.size();
-
- // Ignore trailing zeros:
- Index actual_n = n;
- while(actual_n>1 && col0(actual_n-1)==0) --actual_n;
- // Deflated non-zero singular values are kept in-place,
- // we thus compute an indirection array to properly ignore all deflated entries.
- // TODO compute it once!
- Index m = 0; // size of the deflated problem
- Array<Index,1,Dynamic> perm(actual_n);
- {
- for(Index k=0;k<actual_n;++k)
- {
- if(col0(k)!=0)
- perm(m++) = k;
- }
- }
- perm.conservativeResize(m);
+ Index m = perm.size();
+ Index last = perm(m-1);
// The offset permits to skip deflated entries while computing zhat
for (Index k = 0; k < n; ++k)
@@ -794,7 +847,7 @@
{
// see equation (3.6)
RealScalar dk = diag(k);
- RealScalar prod = (singVals(actual_n-1) + dk) * (mus(actual_n-1) + (shifts(actual_n-1) - dk));
+ RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));
for(Index l = 0; l<m; ++l)
{
@@ -805,12 +858,13 @@
prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
- std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk)) << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
+ std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
+ << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
#endif
}
}
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(actual_n-1) + dk) << " * " << mus(actual_n-1) + shifts(actual_n-1) << " - " << dk << "\n";
+ std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
#endif
RealScalar tmp = sqrt(prod);
zhat(k) = col0(k) > 0 ? tmp : -tmp;
@@ -821,26 +875,11 @@
// compute singular vectors
template <typename MatrixType>
void BDCSVD<MatrixType>::computeSingVecs
- (const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals,
+ (const ArrayXr& zhat, const ArrayXr& diag, const ArrayXi &perm, const VectorType& singVals,
const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V)
{
Index n = zhat.size();
-
- // Deflated non-zero singular values are kept in-place,
- // we thus compute an indirection array to properly ignore all deflated entries.
- // TODO compute it once!
- Index actual_n = n;
- while(actual_n>1 && zhat(actual_n-1)==0) --actual_n;
- Index m = 0;
- Array<Index,1,Dynamic> perm(actual_n);
- {
- for(Index k=0;k<actual_n;++k)
- {
- if(zhat(k)!=0)
- perm(m++) = k;
- }
- }
- perm.conservativeResize(m);
+ Index m = perm.size();
for (Index k = 0; k < n; ++k)
{
@@ -863,8 +902,6 @@
if (m_compV)
{
V.col(k).setZero();
-// for(Index i=1;i<actual_n;++i)
-// V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
for(Index l=1;l<m;++l)
{
Index i = perm(l);
@@ -908,7 +945,7 @@
// page 13
-// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
+// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
// TODO deflation44 is still broken and not properly tested
template <typename MatrixType>
@@ -940,18 +977,13 @@
c/=r;
s/=r;
m_computed(firstColm + i, firstColm) = r;
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
+ m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
m_computed(firstColm + j, firstColm) = 0;
- JacobiRotation<RealScalar> J(c,s);
- if (m_compU)
- {
- m_naiveU.middleRows(firstColu, size).applyOnTheRight(firstColu + i, firstColu + j, J);
- }
- if (m_compV)
- {
- m_naiveU.middleRows(firstRowW, size-1).applyOnTheRight(firstColW + i, firstColW + j, J.transpose());
- }
+ JacobiRotation<RealScalar> J(c,-s);
+ if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
+ else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
+ if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
}// end deflation 44
@@ -964,43 +996,49 @@
using std::max;
const Index length = lastCol + 1 - firstCol;
+ Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
+ Diagonal<MatrixXr> fulldiag(m_computed);
+ VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
+
+ RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
+ RealScalar epsilon_strict = NumTraits<RealScalar>::epsilon() * maxDiag;
+ RealScalar epsilon_coarse = 8 * NumTraits<RealScalar>::epsilon() * (max)(col0.cwiseAbs().maxCoeff(), maxDiag);
+
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
assert(m_naiveU.allFinite());
assert(m_naiveV.allFinite());
assert(m_computed.allFinite());
#endif
-
- Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
- Diagonal<MatrixXr> fulldiag(m_computed);
- VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
-
- RealScalar epsilon = 8 * NumTraits<RealScalar>::epsilon() * (max)(col0.cwiseAbs().maxCoeff(), diag.cwiseAbs().maxCoeff());
+
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
+#endif
//condition 4.1
- if (diag(0) < epsilon)
+ if (diag(0) < epsilon_coarse)
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon << "\n";
+ std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
#endif
- diag(0) = epsilon;
+ diag(0) = epsilon_coarse;
}
//condition 4.2
for (Index i=1;i<length;++i)
- if (abs(col0(i)) < epsilon)
+ if (abs(col0(i)) < epsilon_strict)
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon << " (diag(" << i << ")=" << diag(i) << ")\n";
+ std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
#endif
col0(i) = 0;
}
//condition 4.3
for (Index i=1;i<length; i++)
- if (diag(i) < epsilon)
+ if (diag(i) < epsilon_coarse)
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.3, cancel z(" << i << ") because " << diag(i) << " < " << epsilon << " (z[" << i << "]=" << col0(i) << ")\n";
+ std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
#endif
deflation43(firstCol, shift, i, length);
}
@@ -1010,14 +1048,22 @@
assert(m_naiveV.allFinite());
assert(m_computed.allFinite());
#endif
-
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << "to be sorted: " << diag.transpose() << "\n\n";
+#endif
{
+ // Check for total deflation
+ // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
+ bool total_deflation = (col0.tail(length-1).array()==RealScalar(0)).all();
+
// Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
// First, compute the respective permutation.
Index *permutation = new Index[length]; // FIXME avoid repeated dynamic memory allocation
{
permutation[0] = 0;
Index p = 1;
+
+ // Move deflated diagonal entries at the end.
for(Index i=1; i<length; ++i)
if(diag(i)==0)
permutation[p++] = i;
@@ -1032,6 +1078,22 @@
}
}
+ // If we have a total deflation, then we have to insert diag(0) at the right place
+ if(total_deflation)
+ {
+ for(Index i=1; i<length; ++i)
+ {
+ Index pi = permutation[i];
+ if(diag(pi)==0 || diag(0)<diag(pi))
+ permutation[i-1] = permutation[i];
+ else
+ {
+ permutation[i-1] = 0;
+ break;
+ }
+ }
+ }
+
// Current index of each col, and current column of each index
Index *realInd = new Index[length]; // FIXME avoid repeated dynamic memory allocation
Index *realCol = new Index[length]; // FIXME avoid repeated dynamic memory allocation
@@ -1042,15 +1104,15 @@
realInd[pos] = pos;
}
- for(Index i = 1; i < length; i++)
+ for(Index i = total_deflation?0:1; i < length; i++)
{
- const Index pi = permutation[length - i];
+ const Index pi = permutation[length - (total_deflation ? i+1 : i)];
const Index J = realCol[pi];
using std::swap;
- // swap diaognal and first column entries:
+ // swap diagonal and first column entries:
swap(diag(i), diag(J));
- swap(col0(i), col0(J));
+ if(i!=0 && J!=0) swap(col0(i), col0(J));
// change columns
if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
@@ -1068,23 +1130,31 @@
delete[] realInd;
delete[] realCol;
}
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
+ std::cout << " : " << col0.transpose() << "\n\n";
+#endif
+
+ //condition 4.4
+ {
+ Index i = length-1;
+ while(i>0 && (diag(i)==0 || col0(i)==0)) --i;
+ for(; i>1;--i)
+ if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
+ {
+#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
+ std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
+#endif
+ eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
+ deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
+ }
+ }
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- for(int k=2;k<length;++k)
- assert(diag(k-1)<=diag(k) || diag(k)==0);
+ for(Index j=2;j<length;++j)
+ assert(diag(j-1)<=diag(j) || diag(j)==0);
#endif
- //condition 4.4
- for (Index i = 1; i+1<length && diag(i+1)!=0 && col0(i+1)!=0;i++)
- if ((diag(i+1) - diag(i)) < NumTraits<RealScalar>::epsilon()*diag(i+1))
-// if ((diag(i+1) - diag(i)) < epsilon)
- {
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i+1) - diag(i)) << " < " << epsilon << "\n";
-#endif
- deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i, i + 1, length);
- }
-
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
assert(m_naiveU.allFinite());
assert(m_naiveV.allFinite());