Revert "Geometry/EulerAngles: make sure that returned solution has canonical ranges"

This reverts commit 7f06bcae2c4aae657fded7c7b999d69ee68962d9
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index adb970e..605a05e 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -400,7 +400,7 @@
     inline PlainObject unitOrthogonal(void) const;
 
     EIGEN_DEVICE_FUNC
-    inline Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2, bool canonical = true) const;
+    inline Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
 
     // put this as separate enum value to work around possible GCC 4.3 bug (?)
     enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits<Derived>::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical)
diff --git a/Eigen/src/Geometry/EulerAngles.h b/Eigen/src/Geometry/EulerAngles.h
index 7caedd9..2b99960 100644
--- a/Eigen/src/Geometry/EulerAngles.h
+++ b/Eigen/src/Geometry/EulerAngles.h
@@ -30,19 +30,13 @@
   *      * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
   * This corresponds to the right-multiply conventions (with right hand side frames).
   * 
-  * When canonical == true (the default):
-  * For Tait-Bryan angle configurations (a0 != a2), the returned angles are in the ranges [-pi:pi]x[-pi/2:pi/2]x[-pi:pi].
-  * For proper Euler angle configurations (a0 == a2), the returned angles are in the ranges [-pi:pi]x[0:pi]x[-pi:pi].
-  *
-  * When canonical == false:
-  * The returned angles follow a non-standard range convention used by legacy versions of Eigen, [0:pi]x[-pi:pi]x[-pi:pi].
-  * Set canonical to false to retain legacy behaviour.
+  * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
   * 
   * \sa class AngleAxis
   */
 template<typename Derived>
 EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
-MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2, bool canonical) const
+MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
 {
   EIGEN_USING_STD(atan2)
   EIGEN_USING_STD(sin)
@@ -113,24 +107,6 @@
   }
   if (!odd)
     res = -res;
-
-  if (canonical)
-  {
-    // If Tait-Bryan angles, make sure that the result is in the canonical range (middle axis angle in [-pi/2, pi/2]).
-    if (a0 != a2 && res.cwiseAbs()[1] > Scalar(EIGEN_PI / 2))
-    {
-      res -= Scalar(EIGEN_PI) * res.cwiseSign();
-      res[1] = -res[1];
-    }
-
-    // If proper Euler angles, make sure that the result is in the canonical range (middle axis angle in [0, pi]).
-    if (a0 == a2 && res[1] < Scalar(0))
-    {
-        res[0] -= Scalar(EIGEN_PI) * res.cwiseSign()[0];
-        res[2] -= Scalar(EIGEN_PI) * res.cwiseSign()[2];
-        res[1] = -res[1];
-    }
-  }
   
   return res;
 }
diff --git a/test/geo_eulerangles.cpp b/test/geo_eulerangles.cpp
index ba23e1f..bea2419 100644
--- a/test/geo_eulerangles.cpp
+++ b/test/geo_eulerangles.cpp
@@ -20,47 +20,22 @@
   typedef Matrix<Scalar,3,1> Vector3;
   typedef AngleAxis<Scalar> AngleAxisx;
   using std::abs;
-  const Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
-
-  // Test the new default canonical ranges behaviour of eulerAngles (canonical = true)
-  {
-    Vector3 eabis = m.eulerAngles(i, j, k);
-    Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
-    VERIFY_IS_APPROX(m,  mbis);
-
-    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[0]);
-    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
-    if (i != k)
-    {
-      // Tait-Bryan sequence
-      VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI / 2), eabis[1]);
-      VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI / 2));
-    }
-    else
-    {
-      // Proper Euler sequence
-      // approx_or_less_than does not work for 0
-      VERIFY(0 < eabis[1] || test_isMuchSmallerThan(eabis[1], Scalar(1)));
-      VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
-    }
-    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
-    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
-  }
-
-  // Test legacy behaviour of eulerAngles (canonical = false)
-  {
-    Vector3 eabis = m.eulerAngles(i, j, k, false);
-    Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
-    VERIFY_IS_APPROX(m,  mbis);
-
-    // approx_or_less_than does not work for 0
-    VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
-    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
-    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
-    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
-    VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
-    VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
-  }
+  Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
+  Vector3 eabis = m.eulerAngles(i, j, k);
+  Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k))); 
+  VERIFY_IS_APPROX(m,  mbis); 
+  /* If I==K, and ea[1]==0, then there no unique solution. */ 
+  /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ 
+  if((i!=k || !numext::is_exactly_zero(ea[1])) && (i == k || !internal::isApprox(abs(ea[1]), Scalar(EIGEN_PI / 2), test_precision<Scalar>())) )
+    VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
+  
+  // approx_or_less_than does not work for 0
+  VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
+  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
+  VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
+  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
+  VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
+  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
 }
 
 template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
@@ -108,8 +83,8 @@
   ea = m.eulerAngles(0,1,0);
   check_all_var(ea);
   
-  // Check with random angles in range [-pi:pi]x[-pi:pi]x[-pi:pi].
-  ea = Array3::Random() * Scalar(EIGEN_PI)*Array3(1,1,1);
+  // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
+  ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
   check_all_var(ea);
   
   ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));