| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| /* |
| |
| NOTE: the _symbolic, and _numeric functions has been adapted from |
| the LDL library: |
| |
| LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. |
| |
| LDL License: |
| |
| Your use or distribution of LDL or any modified version of |
| LDL implies that you agree to this License. |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with this library; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 |
| USA |
| |
| Permission is hereby granted to use or copy this program under the |
| terms of the GNU LGPL, provided that the Copyright, this License, |
| and the Availability of the original version is retained on all copies. |
| User documentation of any code that uses this code or any modified |
| version of this code must cite the Copyright, this License, the |
| Availability note, and "Used by permission." Permission to modify |
| the code and to distribute modified code is granted, provided the |
| Copyright, this License, and the Availability note are retained, |
| and a notice that the code was modified is included. |
| */ |
| |
| #ifndef EIGEN_SPARSELDLT_H |
| #define EIGEN_SPARSELDLT_H |
| |
| /** \ingroup Sparse_Module |
| * |
| * \class SparseLDLT |
| * |
| * \brief LDLT Cholesky decomposition of a sparse matrix and associated features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition |
| * |
| * \warning the upper triangular part has to be specified. The rest of the matrix is not used. The input matrix must be column major. |
| * |
| * \sa class LDLT, class LDLT |
| */ |
| template<typename MatrixType, int Backend = DefaultBackend> |
| class SparseLDLT |
| { |
| protected: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef SparseMatrix<Scalar> CholMatrixType; |
| typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType; |
| |
| enum { |
| SupernodalFactorIsDirty = 0x10000, |
| MatrixLIsDirty = 0x20000 |
| }; |
| |
| public: |
| |
| /** Creates a dummy LDLT factorization object with flags \a flags. */ |
| SparseLDLT(int flags = 0) |
| : m_flags(flags), m_status(0) |
| { |
| ei_assert((MatrixType::Flags&RowMajorBit)==0); |
| m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision(); |
| } |
| |
| /** Creates a LDLT object and compute the respective factorization of \a matrix using |
| * flags \a flags. */ |
| SparseLDLT(const MatrixType& matrix, int flags = 0) |
| : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0) |
| { |
| ei_assert((MatrixType::Flags&RowMajorBit)==0); |
| m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision(); |
| compute(matrix); |
| } |
| |
| /** Sets the relative threshold value used to prune zero coefficients during the decomposition. |
| * |
| * Setting a value greater than zero speeds up computation, and yields to an imcomplete |
| * factorization with fewer non zero coefficients. Such approximate factors are especially |
| * useful to initialize an iterative solver. |
| * |
| * \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed |
| * even if the matrix is positive definite. |
| * |
| * Note that the exact meaning of this parameter might depends on the actual |
| * backend. Moreover, not all backends support this feature. |
| * |
| * \sa precision() */ |
| void setPrecision(RealScalar v) { m_precision = v; } |
| |
| /** \returns the current precision. |
| * |
| * \sa setPrecision() */ |
| RealScalar precision() const { return m_precision; } |
| |
| /** Sets the flags. Possible values are: |
| * - CompleteFactorization |
| * - IncompleteFactorization |
| * - MemoryEfficient (hint to use the memory most efficient method offered by the backend) |
| * - SupernodalMultifrontal (implies a complete factorization if supported by the backend, |
| * overloads the MemoryEfficient flags) |
| * - SupernodalLeftLooking (implies a complete factorization if supported by the backend, |
| * overloads the MemoryEfficient flags) |
| * |
| * \sa flags() */ |
| void settags(int f) { m_flags = f; } |
| /** \returns the current flags */ |
| int flags() const { return m_flags; } |
| |
| /** Computes/re-computes the LDLT factorization */ |
| void compute(const MatrixType& matrix); |
| |
| /** Perform a symbolic factorization */ |
| void _symbolic(const MatrixType& matrix); |
| /** Perform the actual factorization using the previously |
| * computed symbolic factorization */ |
| bool _numeric(const MatrixType& matrix); |
| |
| /** \returns the lower triangular matrix L */ |
| inline const CholMatrixType& matrixL(void) const { return m_matrix; } |
| |
| /** \returns the coefficients of the diagonal matrix D */ |
| inline VectorType vectorD(void) const { return m_diag; } |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &b) const; |
| |
| /** \returns true if the factorization succeeded */ |
| inline bool succeeded(void) const { return m_succeeded; } |
| |
| protected: |
| CholMatrixType m_matrix; |
| VectorType m_diag; |
| VectorXi m_parent; // elimination tree |
| VectorXi m_nonZerosPerCol; |
| // VectorXi m_w; // workspace |
| RealScalar m_precision; |
| int m_flags; |
| mutable int m_status; |
| bool m_succeeded; |
| }; |
| |
| /** Computes / recomputes the LDLT decomposition of matrix \a a |
| * using the default algorithm. |
| */ |
| template<typename MatrixType, int Backend> |
| void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a) |
| { |
| _symbolic(a); |
| m_succeeded = _numeric(a); |
| } |
| |
| template<typename MatrixType, int Backend> |
| void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a) |
| { |
| assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| m_matrix.resize(size, size); |
| m_parent.resize(size); |
| m_nonZerosPerCol.resize(size); |
| Index * tags = ei_aligned_stack_new(Index, size); |
| |
| const Index* Ap = a._outerIndexPtr(); |
| const Index* Ai = a._innerIndexPtr(); |
| Index* Lp = m_matrix._outerIndexPtr(); |
| const Index* P = 0; |
| Index* Pinv = 0; |
| |
| if (P) |
| { |
| /* If P is present then compute Pinv, the inverse of P */ |
| for (Index k = 0; k < size; ++k) |
| Pinv[P[k]] = k; |
| } |
| for (Index k = 0; k < size; ++k) |
| { |
| /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ |
| m_parent[k] = -1; /* parent of k is not yet known */ |
| tags[k] = k; /* mark node k as visited */ |
| m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ |
| Index kk = P ? P[k] : k; /* kth original, or permuted, column */ |
| Index p2 = Ap[kk+1]; |
| for (Index p = Ap[kk]; p < p2; ++p) |
| { |
| /* A (i,k) is nonzero (original or permuted A) */ |
| Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; |
| if (i < k) |
| { |
| /* follow path from i to root of etree, stop at flagged node */ |
| for (; tags[i] != k; i = m_parent[i]) |
| { |
| /* find parent of i if not yet determined */ |
| if (m_parent[i] == -1) |
| m_parent[i] = k; |
| ++m_nonZerosPerCol[i]; /* L (k,i) is nonzero */ |
| tags[i] = k; /* mark i as visited */ |
| } |
| } |
| } |
| } |
| /* construct Lp index array from m_nonZerosPerCol column counts */ |
| Lp[0] = 0; |
| for (Index k = 0; k < size; ++k) |
| Lp[k+1] = Lp[k] + m_nonZerosPerCol[k]; |
| |
| m_matrix.resizeNonZeros(Lp[size]); |
| ei_aligned_stack_delete(Index, tags, size); |
| } |
| |
| template<typename MatrixType, int Backend> |
| bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a) |
| { |
| assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| assert(m_parent.size()==size); |
| assert(m_nonZerosPerCol.size()==size); |
| |
| const Index* Ap = a._outerIndexPtr(); |
| const Index* Ai = a._innerIndexPtr(); |
| const Scalar* Ax = a._valuePtr(); |
| const Index* Lp = m_matrix._outerIndexPtr(); |
| Index* Li = m_matrix._innerIndexPtr(); |
| Scalar* Lx = m_matrix._valuePtr(); |
| m_diag.resize(size); |
| |
| Scalar * y = ei_aligned_stack_new(Scalar, size); |
| Index * pattern = ei_aligned_stack_new(Index, size); |
| Index * tags = ei_aligned_stack_new(Index, size); |
| |
| const Index* P = 0; |
| const Index* Pinv = 0; |
| bool ok = true; |
| |
| for (Index k = 0; k < size; ++k) |
| { |
| /* compute nonzero pattern of kth row of L, in topological order */ |
| y[k] = 0.0; /* Y(0:k) is now all zero */ |
| Index top = size; /* stack for pattern is empty */ |
| tags[k] = k; /* mark node k as visited */ |
| m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ |
| Index kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */ |
| Index p2 = Ap[kk+1]; |
| for (Index p = Ap[kk]; p < p2; ++p) |
| { |
| Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */ |
| if (i <= k) |
| { |
| y[i] += ei_conj(Ax[p]); /* scatter A(i,k) into Y (sum duplicates) */ |
| Index len; |
| for (len = 0; tags[i] != k; i = m_parent[i]) |
| { |
| pattern[len++] = i; /* L(k,i) is nonzero */ |
| tags[i] = k; /* mark i as visited */ |
| } |
| while (len > 0) |
| pattern[--top] = pattern[--len]; |
| } |
| } |
| |
| /* compute numerical values kth row of L (a sparse triangular solve) */ |
| m_diag[k] = y[k]; /* get D(k,k) and clear Y(k) */ |
| y[k] = 0.0; |
| for (; top < size; ++top) |
| { |
| Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */ |
| Scalar yi = (y[i]); /* get and clear Y(i) */ |
| y[i] = 0.0; |
| Index p2 = Lp[i] + m_nonZerosPerCol[i]; |
| Index p; |
| for (p = Lp[i]; p < p2; ++p) |
| y[Li[p]] -= ei_conj(Lx[p]) * (yi); |
| Scalar l_ki = yi / m_diag[i]; /* the nonzero entry L(k,i) */ |
| m_diag[k] -= l_ki * ei_conj(yi); |
| Li[p] = k; /* store L(k,i) in column form of L */ |
| Lx[p] = (l_ki); |
| ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */ |
| } |
| if (m_diag[k] == 0.0) |
| { |
| ok = false; /* failure, D(k,k) is zero */ |
| break; |
| } |
| } |
| |
| ei_aligned_stack_delete(Scalar, y, size); |
| ei_aligned_stack_delete(Index, pattern, size); |
| ei_aligned_stack_delete(Index, tags, size); |
| |
| return ok; /* success, diagonal of D is all nonzero */ |
| } |
| |
| /** Computes b = L^-T D^-1 L^-1 b */ |
| template<typename MatrixType, int Backend> |
| template<typename Derived> |
| bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const |
| { |
| const Index size = m_matrix.rows(); |
| ei_assert(size==b.rows()); |
| if (!m_succeeded) |
| return false; |
| |
| if (m_matrix.nonZeros()>0) // otherwise L==I |
| m_matrix.template triangularView<UnitLower>().solveInPlace(b); |
| b = b.cwiseQuotient(m_diag); |
| if (m_matrix.nonZeros()>0) // otherwise L==I |
| m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(b); |
| |
| return true; |
| } |
| |
| #endif // EIGEN_SPARSELDLT_H |