| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | /* | 
 |  | 
 | NOTE: the _symbolic, and _numeric functions has been adapted from | 
 |       the LDL library: | 
 |  | 
 | LDL Copyright (c) 2005 by Timothy A. Davis.  All Rights Reserved. | 
 |  | 
 | LDL License: | 
 |  | 
 |     Your use or distribution of LDL or any modified version of | 
 |     LDL implies that you agree to this License. | 
 |  | 
 |     This library is free software; you can redistribute it and/or | 
 |     modify it under the terms of the GNU Lesser General Public | 
 |     License as published by the Free Software Foundation; either | 
 |     version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |     This library is distributed in the hope that it will be useful, | 
 |     but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |     Lesser General Public License for more details. | 
 |  | 
 |     You should have received a copy of the GNU Lesser General Public | 
 |     License along with this library; if not, write to the Free Software | 
 |     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 | 
 |     USA | 
 |  | 
 |     Permission is hereby granted to use or copy this program under the | 
 |     terms of the GNU LGPL, provided that the Copyright, this License, | 
 |     and the Availability of the original version is retained on all copies. | 
 |     User documentation of any code that uses this code or any modified | 
 |     version of this code must cite the Copyright, this License, the | 
 |     Availability note, and "Used by permission." Permission to modify | 
 |     the code and to distribute modified code is granted, provided the | 
 |     Copyright, this License, and the Availability note are retained, | 
 |     and a notice that the code was modified is included. | 
 |  */ | 
 |  | 
 | #ifndef EIGEN_SPARSELDLT_H | 
 | #define EIGEN_SPARSELDLT_H | 
 |  | 
 | /** \ingroup Sparse_Module | 
 |   * | 
 |   * \class SparseLDLT | 
 |   * | 
 |   * \brief LDLT Cholesky decomposition of a sparse matrix and associated features | 
 |   * | 
 |   * \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition | 
 |   * | 
 |   * \warning the upper triangular part has to be specified. The rest of the matrix is not used. The input matrix must be column major. | 
 |   * | 
 |   * \sa class LDLT, class LDLT | 
 |   */ | 
 | template<typename MatrixType, int Backend = DefaultBackend> | 
 | class SparseLDLT | 
 | { | 
 |   protected: | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::Index Index; | 
 |     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
 |     typedef SparseMatrix<Scalar> CholMatrixType; | 
 |     typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType; | 
 |  | 
 |     enum { | 
 |       SupernodalFactorIsDirty      = 0x10000, | 
 |       MatrixLIsDirty               = 0x20000 | 
 |     }; | 
 |  | 
 |   public: | 
 |  | 
 |     /** Creates a dummy LDLT factorization object with flags \a flags. */ | 
 |     SparseLDLT(int flags = 0) | 
 |       : m_flags(flags), m_status(0) | 
 |     { | 
 |       ei_assert((MatrixType::Flags&RowMajorBit)==0); | 
 |       m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision(); | 
 |     } | 
 |  | 
 |     /** Creates a LDLT object and compute the respective factorization of \a matrix using | 
 |       * flags \a flags. */ | 
 |     SparseLDLT(const MatrixType& matrix, int flags = 0) | 
 |       : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0) | 
 |     { | 
 |       ei_assert((MatrixType::Flags&RowMajorBit)==0); | 
 |       m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision(); | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     /** Sets the relative threshold value used to prune zero coefficients during the decomposition. | 
 |       * | 
 |       * Setting a value greater than zero speeds up computation, and yields to an imcomplete | 
 |       * factorization with fewer non zero coefficients. Such approximate factors are especially | 
 |       * useful to initialize an iterative solver. | 
 |       * | 
 |       * \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed | 
 |       * even if the matrix is positive definite. | 
 |       * | 
 |       * Note that the exact meaning of this parameter might depends on the actual | 
 |       * backend. Moreover, not all backends support this feature. | 
 |       * | 
 |       * \sa precision() */ | 
 |     void setPrecision(RealScalar v) { m_precision = v; } | 
 |  | 
 |     /** \returns the current precision. | 
 |       * | 
 |       * \sa setPrecision() */ | 
 |     RealScalar precision() const { return m_precision; } | 
 |  | 
 |     /** Sets the flags. Possible values are: | 
 |       *  - CompleteFactorization | 
 |       *  - IncompleteFactorization | 
 |       *  - MemoryEfficient          (hint to use the memory most efficient method offered by the backend) | 
 |       *  - SupernodalMultifrontal   (implies a complete factorization if supported by the backend, | 
 |       *                              overloads the MemoryEfficient flags) | 
 |       *  - SupernodalLeftLooking    (implies a complete factorization  if supported by the backend, | 
 |       *                              overloads the MemoryEfficient flags) | 
 |       * | 
 |       * \sa flags() */ | 
 |     void settags(int f) { m_flags = f; } | 
 |     /** \returns the current flags */ | 
 |     int flags() const { return m_flags; } | 
 |  | 
 |     /** Computes/re-computes the LDLT factorization */ | 
 |     void compute(const MatrixType& matrix); | 
 |  | 
 |     /** Perform a symbolic factorization */ | 
 |     void _symbolic(const MatrixType& matrix); | 
 |     /** Perform the actual factorization using the previously | 
 |       * computed symbolic factorization */ | 
 |     bool _numeric(const MatrixType& matrix); | 
 |  | 
 |     /** \returns the lower triangular matrix L */ | 
 |     inline const CholMatrixType& matrixL(void) const { return m_matrix; } | 
 |  | 
 |     /** \returns the coefficients of the diagonal matrix D */ | 
 |     inline VectorType vectorD(void) const { return m_diag; } | 
 |  | 
 |     template<typename Derived> | 
 |     bool solveInPlace(MatrixBase<Derived> &b) const; | 
 |  | 
 |     /** \returns true if the factorization succeeded */ | 
 |     inline bool succeeded(void) const { return m_succeeded; } | 
 |  | 
 |   protected: | 
 |     CholMatrixType m_matrix; | 
 |     VectorType m_diag; | 
 |     VectorXi m_parent; // elimination tree | 
 |     VectorXi m_nonZerosPerCol; | 
 | //     VectorXi m_w; // workspace | 
 |     RealScalar m_precision; | 
 |     int m_flags; | 
 |     mutable int m_status; | 
 |     bool m_succeeded; | 
 | }; | 
 |  | 
 | /** Computes / recomputes the LDLT decomposition of matrix \a a | 
 |   * using the default algorithm. | 
 |   */ | 
 | template<typename MatrixType, int Backend> | 
 | void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a) | 
 | { | 
 |   _symbolic(a); | 
 |   m_succeeded = _numeric(a); | 
 | } | 
 |  | 
 | template<typename MatrixType, int Backend> | 
 | void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a) | 
 | { | 
 |   assert(a.rows()==a.cols()); | 
 |   const Index size = a.rows(); | 
 |   m_matrix.resize(size, size); | 
 |   m_parent.resize(size); | 
 |   m_nonZerosPerCol.resize(size); | 
 |   Index * tags = ei_aligned_stack_new(Index, size); | 
 |  | 
 |   const Index* Ap = a._outerIndexPtr(); | 
 |   const Index* Ai = a._innerIndexPtr(); | 
 |   Index* Lp = m_matrix._outerIndexPtr(); | 
 |   const Index* P = 0; | 
 |   Index* Pinv = 0; | 
 |  | 
 |   if (P) | 
 |   { | 
 |     /* If P is present then compute Pinv, the inverse of P */ | 
 |     for (Index k = 0; k < size; ++k) | 
 |       Pinv[P[k]] = k; | 
 |   } | 
 |   for (Index k = 0; k < size; ++k) | 
 |   { | 
 |     /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ | 
 |     m_parent[k] = -1;             /* parent of k is not yet known */ | 
 |     tags[k] = k;                  /* mark node k as visited */ | 
 |     m_nonZerosPerCol[k] = 0;      /* count of nonzeros in column k of L */ | 
 |     Index kk = P ? P[k] : k;      /* kth original, or permuted, column */ | 
 |     Index p2 = Ap[kk+1]; | 
 |     for (Index p = Ap[kk]; p < p2; ++p) | 
 |     { | 
 |       /* A (i,k) is nonzero (original or permuted A) */ | 
 |       Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; | 
 |       if (i < k) | 
 |       { | 
 |         /* follow path from i to root of etree, stop at flagged node */ | 
 |         for (; tags[i] != k; i = m_parent[i]) | 
 |         { | 
 |           /* find parent of i if not yet determined */ | 
 |           if (m_parent[i] == -1) | 
 |             m_parent[i] = k; | 
 |           ++m_nonZerosPerCol[i];        /* L (k,i) is nonzero */ | 
 |           tags[i] = k;                  /* mark i as visited */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   /* construct Lp index array from m_nonZerosPerCol column counts */ | 
 |   Lp[0] = 0; | 
 |   for (Index k = 0; k < size; ++k) | 
 |     Lp[k+1] = Lp[k] + m_nonZerosPerCol[k]; | 
 |  | 
 |   m_matrix.resizeNonZeros(Lp[size]); | 
 |   ei_aligned_stack_delete(Index, tags, size); | 
 | } | 
 |  | 
 | template<typename MatrixType, int Backend> | 
 | bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a) | 
 | { | 
 |   assert(a.rows()==a.cols()); | 
 |   const Index size = a.rows(); | 
 |   assert(m_parent.size()==size); | 
 |   assert(m_nonZerosPerCol.size()==size); | 
 |  | 
 |   const Index* Ap = a._outerIndexPtr(); | 
 |   const Index* Ai = a._innerIndexPtr(); | 
 |   const Scalar* Ax = a._valuePtr(); | 
 |   const Index* Lp = m_matrix._outerIndexPtr(); | 
 |   Index* Li = m_matrix._innerIndexPtr(); | 
 |   Scalar* Lx = m_matrix._valuePtr(); | 
 |   m_diag.resize(size); | 
 |  | 
 |   Scalar * y = ei_aligned_stack_new(Scalar, size); | 
 |   Index * pattern = ei_aligned_stack_new(Index, size); | 
 |   Index * tags = ei_aligned_stack_new(Index, size); | 
 |  | 
 |   const Index* P = 0; | 
 |   const Index* Pinv = 0; | 
 |   bool ok = true; | 
 |  | 
 |   for (Index k = 0; k < size; ++k) | 
 |   { | 
 |     /* compute nonzero pattern of kth row of L, in topological order */ | 
 |     y[k] = 0.0;                     /* Y(0:k) is now all zero */ | 
 |     Index top = size;               /* stack for pattern is empty */ | 
 |     tags[k] = k;                    /* mark node k as visited */ | 
 |     m_nonZerosPerCol[k] = 0;        /* count of nonzeros in column k of L */ | 
 |     Index kk = (P) ? (P[k]) : (k);  /* kth original, or permuted, column */ | 
 |     Index p2 = Ap[kk+1]; | 
 |     for (Index p = Ap[kk]; p < p2; ++p) | 
 |     { | 
 |       Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */ | 
 |       if (i <= k) | 
 |       { | 
 |         y[i] += ei_conj(Ax[p]);            /* scatter A(i,k) into Y (sum duplicates) */ | 
 |         Index len; | 
 |         for (len = 0; tags[i] != k; i = m_parent[i]) | 
 |         { | 
 |           pattern[len++] = i;     /* L(k,i) is nonzero */ | 
 |           tags[i] = k;            /* mark i as visited */ | 
 |         } | 
 |         while (len > 0) | 
 |           pattern[--top] = pattern[--len]; | 
 |       } | 
 |     } | 
 |  | 
 |     /* compute numerical values kth row of L (a sparse triangular solve) */ | 
 |     m_diag[k] = y[k];                       /* get D(k,k) and clear Y(k) */ | 
 |     y[k] = 0.0; | 
 |     for (; top < size; ++top) | 
 |     { | 
 |       Index i = pattern[top];       /* pattern[top:n-1] is pattern of L(:,k) */ | 
 |       Scalar yi = (y[i]);             /* get and clear Y(i) */ | 
 |       y[i] = 0.0; | 
 |       Index p2 = Lp[i] + m_nonZerosPerCol[i]; | 
 |       Index p; | 
 |       for (p = Lp[i]; p < p2; ++p) | 
 |         y[Li[p]] -= ei_conj(Lx[p]) * (yi); | 
 |       Scalar l_ki = yi / m_diag[i];       /* the nonzero entry L(k,i) */ | 
 |       m_diag[k] -= l_ki * ei_conj(yi); | 
 |       Li[p] = k;                          /* store L(k,i) in column form of L */ | 
 |       Lx[p] = (l_ki); | 
 |       ++m_nonZerosPerCol[i];              /* increment count of nonzeros in col i */ | 
 |     } | 
 |     if (m_diag[k] == 0.0) | 
 |     { | 
 |       ok = false;                         /* failure, D(k,k) is zero */ | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   ei_aligned_stack_delete(Scalar, y, size); | 
 |   ei_aligned_stack_delete(Index, pattern, size); | 
 |   ei_aligned_stack_delete(Index, tags, size); | 
 |  | 
 |   return ok;  /* success, diagonal of D is all nonzero */ | 
 | } | 
 |  | 
 | /** Computes b = L^-T D^-1 L^-1 b */ | 
 | template<typename MatrixType, int Backend> | 
 | template<typename Derived> | 
 | bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const | 
 | { | 
 |   const Index size = m_matrix.rows(); | 
 |   ei_assert(size==b.rows()); | 
 |   if (!m_succeeded) | 
 |     return false; | 
 |  | 
 |   if (m_matrix.nonZeros()>0) // otherwise L==I | 
 |     m_matrix.template triangularView<UnitLower>().solveInPlace(b); | 
 |   b = b.cwiseQuotient(m_diag); | 
 |   if (m_matrix.nonZeros()>0) // otherwise L==I | 
 |     m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(b); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | #endif // EIGEN_SPARSELDLT_H |