| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_SUPERLUSUPPORT_H | 
 | #define EIGEN_SUPERLUSUPPORT_H | 
 |  | 
 | // declaration of gssvx taken from GMM++ | 
 | #define DECL_GSSVX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \ | 
 |     inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,  \ | 
 |          int *perm_c, int *perm_r, int *etree, char *equed,  \ | 
 |          FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,         \ | 
 |          SuperMatrix *U, void *work, int lwork,              \ | 
 |          SuperMatrix *B, SuperMatrix *X,                     \ | 
 |          FLOATTYPE *recip_pivot_growth,                      \ | 
 |          FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \ | 
 |          SuperLUStat_t *stats, int *info, KEYTYPE) {         \ | 
 |     using namespace NAMESPACE; \ | 
 |     mem_usage_t mem_usage;                                    \ | 
 |     NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L,  \ | 
 |          U, work, lwork, B, X, recip_pivot_growth, rcond,    \ | 
 |          ferr, berr, &mem_usage, stats, info);               \ | 
 |     return mem_usage.for_lu; /* bytes used by the factor storage */     \ | 
 |   } | 
 |  | 
 | DECL_GSSVX(SuperLU_S,sgssvx,float,float) | 
 | DECL_GSSVX(SuperLU_C,cgssvx,float,std::complex<float>) | 
 | DECL_GSSVX(SuperLU_D,dgssvx,double,double) | 
 | DECL_GSSVX(SuperLU_Z,zgssvx,double,std::complex<double>) | 
 |  | 
 | #ifdef MILU_ALPHA | 
 | #define EIGEN_SUPERLU_HAS_ILU | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_SUPERLU_HAS_ILU | 
 |  | 
 | // similarly for the incomplete factorization using gsisx | 
 | #define DECL_GSISX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \ | 
 |     inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A,  \ | 
 |          int *perm_c, int *perm_r, int *etree, char *equed,  \ | 
 |          FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,         \ | 
 |          SuperMatrix *U, void *work, int lwork,              \ | 
 |          SuperMatrix *B, SuperMatrix *X,                     \ | 
 |          FLOATTYPE *recip_pivot_growth,                      \ | 
 |          FLOATTYPE *rcond,                                   \ | 
 |          SuperLUStat_t *stats, int *info, KEYTYPE) {         \ | 
 |     using namespace NAMESPACE; \ | 
 |     mem_usage_t mem_usage;                                    \ | 
 |     NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L,  \ | 
 |          U, work, lwork, B, X, recip_pivot_growth, rcond,    \ | 
 |          &mem_usage, stats, info);                           \ | 
 |     return mem_usage.for_lu; /* bytes used by the factor storage */     \ | 
 |   } | 
 |  | 
 | DECL_GSISX(SuperLU_S,sgsisx,float,float) | 
 | DECL_GSISX(SuperLU_C,cgsisx,float,std::complex<float>) | 
 | DECL_GSISX(SuperLU_D,dgsisx,double,double) | 
 | DECL_GSISX(SuperLU_Z,zgsisx,double,std::complex<double>) | 
 |  | 
 | #endif | 
 |  | 
 | template<typename MatrixType> | 
 | struct SluMatrixMapHelper; | 
 |  | 
 | /** \internal | 
 |   * | 
 |   * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices | 
 |   * and dense matrices. Supernodal and other fancy format are not supported by this wrapper. | 
 |   * | 
 |   * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure. | 
 |   */ | 
 | struct SluMatrix : SuperMatrix | 
 | { | 
 |   SluMatrix() | 
 |   { | 
 |     Store = &storage; | 
 |   } | 
 |  | 
 |   SluMatrix(const SluMatrix& other) | 
 |     : SuperMatrix(other) | 
 |   { | 
 |     Store = &storage; | 
 |     storage = other.storage; | 
 |   } | 
 |  | 
 |   SluMatrix& operator=(const SluMatrix& other) | 
 |   { | 
 |     SuperMatrix::operator=(static_cast<const SuperMatrix&>(other)); | 
 |     Store = &storage; | 
 |     storage = other.storage; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   struct | 
 |   { | 
 |     union {int nnz;int lda;}; | 
 |     void *values; | 
 |     int *innerInd; | 
 |     int *outerInd; | 
 |   } storage; | 
 |  | 
 |   void setStorageType(Stype_t t) | 
 |   { | 
 |     Stype = t; | 
 |     if (t==SLU_NC || t==SLU_NR || t==SLU_DN) | 
 |       Store = &storage; | 
 |     else | 
 |     { | 
 |       ei_assert(false && "storage type not supported"); | 
 |       Store = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   template<typename Scalar> | 
 |   void setScalarType() | 
 |   { | 
 |     if (ei_is_same_type<Scalar,float>::ret) | 
 |       Dtype = SLU_S; | 
 |     else if (ei_is_same_type<Scalar,double>::ret) | 
 |       Dtype = SLU_D; | 
 |     else if (ei_is_same_type<Scalar,std::complex<float> >::ret) | 
 |       Dtype = SLU_C; | 
 |     else if (ei_is_same_type<Scalar,std::complex<double> >::ret) | 
 |       Dtype = SLU_Z; | 
 |     else | 
 |     { | 
 |       ei_assert(false && "Scalar type not supported by SuperLU"); | 
 |     } | 
 |   } | 
 |  | 
 |   template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols> | 
 |   static SluMatrix Map(Matrix<Scalar,Rows,Cols,Options,MRows,MCols>& mat) | 
 |   { | 
 |     typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType; | 
 |     ei_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU"); | 
 |     SluMatrix res; | 
 |     res.setStorageType(SLU_DN); | 
 |     res.setScalarType<Scalar>(); | 
 |     res.Mtype     = SLU_GE; | 
 |  | 
 |     res.nrow      = mat.rows(); | 
 |     res.ncol      = mat.cols(); | 
 |  | 
 |     res.storage.lda       = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride(); | 
 |     res.storage.values    = mat.data(); | 
 |     return res; | 
 |   } | 
 |  | 
 |   template<typename MatrixType> | 
 |   static SluMatrix Map(SparseMatrixBase<MatrixType>& mat) | 
 |   { | 
 |     SluMatrix res; | 
 |     if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) | 
 |     { | 
 |       res.setStorageType(SLU_NR); | 
 |       res.nrow      = mat.cols(); | 
 |       res.ncol      = mat.rows(); | 
 |     } | 
 |     else | 
 |     { | 
 |       res.setStorageType(SLU_NC); | 
 |       res.nrow      = mat.rows(); | 
 |       res.ncol      = mat.cols(); | 
 |     } | 
 |  | 
 |     res.Mtype     = SLU_GE; | 
 |  | 
 |     res.storage.nnz       = mat.nonZeros(); | 
 |     res.storage.values    = mat.derived()._valuePtr(); | 
 |     res.storage.innerInd  = mat.derived()._innerIndexPtr(); | 
 |     res.storage.outerInd  = mat.derived()._outerIndexPtr(); | 
 |  | 
 |     res.setScalarType<typename MatrixType::Scalar>(); | 
 |  | 
 |     // FIXME the following is not very accurate | 
 |     if (MatrixType::Flags & Upper) | 
 |       res.Mtype = SLU_TRU; | 
 |     if (MatrixType::Flags & Lower) | 
 |       res.Mtype = SLU_TRL; | 
 |     if (MatrixType::Flags & SelfAdjoint) | 
 |       ei_assert(false && "SelfAdjoint matrix shape not supported by SuperLU"); | 
 |     return res; | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols> | 
 | struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> > | 
 | { | 
 |   typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType; | 
 |   static void run(MatrixType& mat, SluMatrix& res) | 
 |   { | 
 |     ei_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU"); | 
 |     res.setStorageType(SLU_DN); | 
 |     res.setScalarType<Scalar>(); | 
 |     res.Mtype     = SLU_GE; | 
 |  | 
 |     res.nrow      = mat.rows(); | 
 |     res.ncol      = mat.cols(); | 
 |  | 
 |     res.storage.lda       = mat.outerStride(); | 
 |     res.storage.values    = mat.data(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | struct SluMatrixMapHelper<SparseMatrixBase<Derived> > | 
 | { | 
 |   typedef Derived MatrixType; | 
 |   static void run(MatrixType& mat, SluMatrix& res) | 
 |   { | 
 |     if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) | 
 |     { | 
 |       res.setStorageType(SLU_NR); | 
 |       res.nrow      = mat.cols(); | 
 |       res.ncol      = mat.rows(); | 
 |     } | 
 |     else | 
 |     { | 
 |       res.setStorageType(SLU_NC); | 
 |       res.nrow      = mat.rows(); | 
 |       res.ncol      = mat.cols(); | 
 |     } | 
 |  | 
 |     res.Mtype     = SLU_GE; | 
 |  | 
 |     res.storage.nnz       = mat.nonZeros(); | 
 |     res.storage.values    = mat._valuePtr(); | 
 |     res.storage.innerInd  = mat._innerIndexPtr(); | 
 |     res.storage.outerInd  = mat._outerIndexPtr(); | 
 |  | 
 |     res.setScalarType<typename MatrixType::Scalar>(); | 
 |  | 
 |     // FIXME the following is not very accurate | 
 |     if (MatrixType::Flags & Upper) | 
 |       res.Mtype = SLU_TRU; | 
 |     if (MatrixType::Flags & Lower) | 
 |       res.Mtype = SLU_TRL; | 
 |     if (MatrixType::Flags & SelfAdjoint) | 
 |       ei_assert(false && "SelfAdjoint matrix shape not supported by SuperLU"); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | SluMatrix ei_asSluMatrix(MatrixType& mat) | 
 | { | 
 |   return SluMatrix::Map(mat); | 
 | } | 
 |  | 
 | /** View a Super LU matrix as an Eigen expression */ | 
 | template<typename Scalar, int Flags, typename Index> | 
 | MappedSparseMatrix<Scalar,Flags,Index> ei_map_superlu(SluMatrix& sluMat) | 
 | { | 
 |   ei_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR | 
 |          || (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC); | 
 |  | 
 |   Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow; | 
 |  | 
 |   return MappedSparseMatrix<Scalar,Flags,Index>( | 
 |     sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize], | 
 |     sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) ); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | class SparseLU<MatrixType,SuperLU> : public SparseLU<MatrixType> | 
 | { | 
 |   protected: | 
 |     typedef SparseLU<MatrixType> Base; | 
 |     typedef typename Base::Scalar Scalar; | 
 |     typedef typename Base::RealScalar RealScalar; | 
 |     typedef Matrix<Scalar,Dynamic,1> Vector; | 
 |     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
 |     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
 |     typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType; | 
 |     typedef SparseMatrix<Scalar,Upper> UMatrixType; | 
 |     using Base::m_flags; | 
 |     using Base::m_status; | 
 |  | 
 |   public: | 
 |  | 
 |     SparseLU(int flags = NaturalOrdering) | 
 |       : Base(flags) | 
 |     { | 
 |     } | 
 |  | 
 |     SparseLU(const MatrixType& matrix, int flags = NaturalOrdering) | 
 |       : Base(flags) | 
 |     { | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     ~SparseLU() | 
 |     { | 
 |       Destroy_SuperNode_Matrix(&m_sluL); | 
 |       Destroy_CompCol_Matrix(&m_sluU); | 
 |     } | 
 |  | 
 |     inline const LMatrixType& matrixL() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_l; | 
 |     } | 
 |  | 
 |     inline const UMatrixType& matrixU() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_u; | 
 |     } | 
 |  | 
 |     inline const IntColVectorType& permutationP() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_p; | 
 |     } | 
 |  | 
 |     inline const IntRowVectorType& permutationQ() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_q; | 
 |     } | 
 |  | 
 |     Scalar determinant() const; | 
 |  | 
 |     template<typename BDerived, typename XDerived> | 
 |     bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed = SvNoTrans) const; | 
 |  | 
 |     void compute(const MatrixType& matrix); | 
 |  | 
 |   protected: | 
 |  | 
 |     void extractData() const; | 
 |  | 
 |   protected: | 
 |     // cached data to reduce reallocation, etc. | 
 |     mutable LMatrixType m_l; | 
 |     mutable UMatrixType m_u; | 
 |     mutable IntColVectorType m_p; | 
 |     mutable IntRowVectorType m_q; | 
 |  | 
 |     mutable SparseMatrix<Scalar> m_matrix; | 
 |     mutable SluMatrix m_sluA; | 
 |     mutable SuperMatrix m_sluL, m_sluU; | 
 |     mutable SluMatrix m_sluB, m_sluX; | 
 |     mutable SuperLUStat_t m_sluStat; | 
 |     mutable superlu_options_t m_sluOptions; | 
 |     mutable std::vector<int> m_sluEtree; | 
 |     mutable std::vector<RealScalar> m_sluRscale, m_sluCscale; | 
 |     mutable std::vector<RealScalar> m_sluFerr, m_sluBerr; | 
 |     mutable char m_sluEqued; | 
 |     mutable bool m_extractedDataAreDirty; | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a) | 
 | { | 
 |   const int size = a.rows(); | 
 |   m_matrix = a; | 
 |  | 
 |   set_default_options(&m_sluOptions); | 
 |   m_sluOptions.ColPerm = NATURAL; | 
 |   m_sluOptions.PrintStat = NO; | 
 |   m_sluOptions.ConditionNumber = NO; | 
 |   m_sluOptions.Trans = NOTRANS; | 
 |   // m_sluOptions.Equil = NO; | 
 |  | 
 |   switch (Base::orderingMethod()) | 
 |   { | 
 |       case NaturalOrdering          : m_sluOptions.ColPerm = NATURAL; break; | 
 |       case MinimumDegree_AT_PLUS_A  : m_sluOptions.ColPerm = MMD_AT_PLUS_A; break; | 
 |       case MinimumDegree_ATA        : m_sluOptions.ColPerm = MMD_ATA; break; | 
 |       case ColApproxMinimumDegree   : m_sluOptions.ColPerm = COLAMD; break; | 
 |       default: | 
 |         //std::cerr << "Eigen: ordering method \"" << Base::orderingMethod() << "\" not supported by the SuperLU backend\n"; | 
 |         m_sluOptions.ColPerm = NATURAL; | 
 |   }; | 
 |  | 
 |   m_sluA = ei_asSluMatrix(m_matrix); | 
 |   memset(&m_sluL,0,sizeof m_sluL); | 
 |   memset(&m_sluU,0,sizeof m_sluU); | 
 |   //m_sluEqued = 'B'; | 
 |   int info = 0; | 
 |  | 
 |   m_p.resize(size); | 
 |   m_q.resize(size); | 
 |   m_sluRscale.resize(size); | 
 |   m_sluCscale.resize(size); | 
 |   m_sluEtree.resize(size); | 
 |  | 
 |   RealScalar recip_pivot_gross, rcond; | 
 |   RealScalar ferr, berr; | 
 |  | 
 |   // set empty B and X | 
 |   m_sluB.setStorageType(SLU_DN); | 
 |   m_sluB.setScalarType<Scalar>(); | 
 |   m_sluB.Mtype = SLU_GE; | 
 |   m_sluB.storage.values = 0; | 
 |   m_sluB.nrow = m_sluB.ncol = 0; | 
 |   m_sluB.storage.lda = size; | 
 |   m_sluX = m_sluB; | 
 |  | 
 |   StatInit(&m_sluStat); | 
 |   if (m_flags&IncompleteFactorization) | 
 |   { | 
 |     #ifdef EIGEN_SUPERLU_HAS_ILU | 
 |     ilu_set_default_options(&m_sluOptions); | 
 |  | 
 |     // no attempt to preserve column sum | 
 |     m_sluOptions.ILU_MILU = SILU; | 
 |  | 
 |     // only basic ILU(k) support -- no direct control over memory consumption | 
 |     // better to use ILU_DropRule = DROP_BASIC | DROP_AREA | 
 |     // and set ILU_FillFactor to max memory growth | 
 |     m_sluOptions.ILU_DropRule = DROP_BASIC; | 
 |     m_sluOptions.ILU_DropTol = Base::m_precision; | 
 |  | 
 |     SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], | 
 |       &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], | 
 |       &m_sluL, &m_sluU, | 
 |       NULL, 0, | 
 |       &m_sluB, &m_sluX, | 
 |       &recip_pivot_gross, &rcond, | 
 |       &m_sluStat, &info, Scalar()); | 
 |     #else | 
 |     //std::cerr << "Incomplete factorization is only available in SuperLU v4\n"; | 
 |     Base::m_succeeded = false; | 
 |     return; | 
 |     #endif | 
 |   } | 
 |   else | 
 |   { | 
 |     SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], | 
 |       &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], | 
 |       &m_sluL, &m_sluU, | 
 |       NULL, 0, | 
 |       &m_sluB, &m_sluX, | 
 |       &recip_pivot_gross, &rcond, | 
 |       &ferr, &berr, | 
 |       &m_sluStat, &info, Scalar()); | 
 |   } | 
 |   StatFree(&m_sluStat); | 
 |  | 
 |   m_extractedDataAreDirty = true; | 
 |  | 
 |   // FIXME how to better check for errors ??? | 
 |   Base::m_succeeded = (info == 0); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | template<typename BDerived,typename XDerived> | 
 | bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b, | 
 |                         MatrixBase<XDerived> *x, const int transposed) const | 
 | { | 
 |   const int size = m_matrix.rows(); | 
 |   const int rhsCols = b.cols(); | 
 |   ei_assert(size==b.rows()); | 
 |  | 
 |   switch (transposed) { | 
 |       case SvNoTrans    :  m_sluOptions.Trans = NOTRANS; break; | 
 |       case SvTranspose  :  m_sluOptions.Trans = TRANS;   break; | 
 |       case SvAdjoint    :  m_sluOptions.Trans = CONJ;    break; | 
 |       default: | 
 |         //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the SuperLU backend\n"; | 
 |         m_sluOptions.Trans = NOTRANS; | 
 |   } | 
 |  | 
 |   m_sluOptions.Fact = FACTORED; | 
 |   m_sluOptions.IterRefine = NOREFINE; | 
 |  | 
 |   m_sluFerr.resize(rhsCols); | 
 |   m_sluBerr.resize(rhsCols); | 
 |   m_sluB = SluMatrix::Map(b.const_cast_derived()); | 
 |   m_sluX = SluMatrix::Map(x->derived()); | 
 |  | 
 |   StatInit(&m_sluStat); | 
 |   int info = 0; | 
 |   RealScalar recip_pivot_gross, rcond; | 
 |  | 
 |   if (m_flags&IncompleteFactorization) | 
 |   { | 
 |     #ifdef EIGEN_SUPERLU_HAS_ILU | 
 |     SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], | 
 |       &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], | 
 |       &m_sluL, &m_sluU, | 
 |       NULL, 0, | 
 |       &m_sluB, &m_sluX, | 
 |       &recip_pivot_gross, &rcond, | 
 |       &m_sluStat, &info, Scalar()); | 
 |     #else | 
 |     //std::cerr << "Incomplete factorization is only available in SuperLU v4\n"; | 
 |     return false; | 
 |     #endif | 
 |   } | 
 |   else | 
 |   { | 
 |     SuperLU_gssvx( | 
 |       &m_sluOptions, &m_sluA, | 
 |       m_q.data(), m_p.data(), | 
 |       &m_sluEtree[0], &m_sluEqued, | 
 |       &m_sluRscale[0], &m_sluCscale[0], | 
 |       &m_sluL, &m_sluU, | 
 |       NULL, 0, | 
 |       &m_sluB, &m_sluX, | 
 |       &recip_pivot_gross, &rcond, | 
 |       &m_sluFerr[0], &m_sluBerr[0], | 
 |       &m_sluStat, &info, Scalar()); | 
 |   } | 
 |   StatFree(&m_sluStat); | 
 |  | 
 |   // reset to previous state | 
 |   m_sluOptions.Trans = NOTRANS; | 
 |   return info==0; | 
 | } | 
 |  | 
 | // | 
 | // the code of this extractData() function has been adapted from the SuperLU's Matlab support code, | 
 | // | 
 | //  Copyright (c) 1994 by Xerox Corporation.  All rights reserved. | 
 | // | 
 | //  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
 | //  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
 | // | 
 | template<typename MatrixType> | 
 | void SparseLU<MatrixType,SuperLU>::extractData() const | 
 | { | 
 |   if (m_extractedDataAreDirty) | 
 |   { | 
 |     int         upper; | 
 |     int         fsupc, istart, nsupr; | 
 |     int         lastl = 0, lastu = 0; | 
 |     SCformat    *Lstore = static_cast<SCformat*>(m_sluL.Store); | 
 |     NCformat    *Ustore = static_cast<NCformat*>(m_sluU.Store); | 
 |     Scalar      *SNptr; | 
 |  | 
 |     const int size = m_matrix.rows(); | 
 |     m_l.resize(size,size); | 
 |     m_l.resizeNonZeros(Lstore->nnz); | 
 |     m_u.resize(size,size); | 
 |     m_u.resizeNonZeros(Ustore->nnz); | 
 |  | 
 |     int* Lcol = m_l._outerIndexPtr(); | 
 |     int* Lrow = m_l._innerIndexPtr(); | 
 |     Scalar* Lval = m_l._valuePtr(); | 
 |  | 
 |     int* Ucol = m_u._outerIndexPtr(); | 
 |     int* Urow = m_u._innerIndexPtr(); | 
 |     Scalar* Uval = m_u._valuePtr(); | 
 |  | 
 |     Ucol[0] = 0; | 
 |     Ucol[0] = 0; | 
 |  | 
 |     /* for each supernode */ | 
 |     for (int k = 0; k <= Lstore->nsuper; ++k) | 
 |     { | 
 |       fsupc   = L_FST_SUPC(k); | 
 |       istart  = L_SUB_START(fsupc); | 
 |       nsupr   = L_SUB_START(fsupc+1) - istart; | 
 |       upper   = 1; | 
 |  | 
 |       /* for each column in the supernode */ | 
 |       for (int j = fsupc; j < L_FST_SUPC(k+1); ++j) | 
 |       { | 
 |         SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)]; | 
 |  | 
 |         /* Extract U */ | 
 |         for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i) | 
 |         { | 
 |           Uval[lastu] = ((Scalar*)Ustore->nzval)[i]; | 
 |           /* Matlab doesn't like explicit zero. */ | 
 |           if (Uval[lastu] != 0.0) | 
 |             Urow[lastu++] = U_SUB(i); | 
 |         } | 
 |         for (int i = 0; i < upper; ++i) | 
 |         { | 
 |           /* upper triangle in the supernode */ | 
 |           Uval[lastu] = SNptr[i]; | 
 |           /* Matlab doesn't like explicit zero. */ | 
 |           if (Uval[lastu] != 0.0) | 
 |             Urow[lastu++] = L_SUB(istart+i); | 
 |         } | 
 |         Ucol[j+1] = lastu; | 
 |  | 
 |         /* Extract L */ | 
 |         Lval[lastl] = 1.0; /* unit diagonal */ | 
 |         Lrow[lastl++] = L_SUB(istart + upper - 1); | 
 |         for (int i = upper; i < nsupr; ++i) | 
 |         { | 
 |           Lval[lastl] = SNptr[i]; | 
 |           /* Matlab doesn't like explicit zero. */ | 
 |           if (Lval[lastl] != 0.0) | 
 |             Lrow[lastl++] = L_SUB(istart+i); | 
 |         } | 
 |         Lcol[j+1] = lastl; | 
 |  | 
 |         ++upper; | 
 |       } /* for j ... */ | 
 |  | 
 |     } /* for k ... */ | 
 |  | 
 |     // squeeze the matrices : | 
 |     m_l.resizeNonZeros(lastl); | 
 |     m_u.resizeNonZeros(lastu); | 
 |  | 
 |     m_extractedDataAreDirty = false; | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | typename SparseLU<MatrixType,SuperLU>::Scalar SparseLU<MatrixType,SuperLU>::determinant() const | 
 | { | 
 |   if (m_extractedDataAreDirty) | 
 |     extractData(); | 
 |  | 
 |   // TODO this code could be moved to the default/base backend | 
 |   // FIXME perhaps we have to take into account the scale factors m_sluRscale and m_sluCscale ??? | 
 |   Scalar det = Scalar(1); | 
 |   for (int j=0; j<m_u.cols(); ++j) | 
 |   { | 
 |     if (m_u._outerIndexPtr()[j+1]-m_u._outerIndexPtr()[j] > 0) | 
 |     { | 
 |       int lastId = m_u._outerIndexPtr()[j+1]-1; | 
 |       ei_assert(m_u._innerIndexPtr()[lastId]<=j); | 
 |       if (m_u._innerIndexPtr()[lastId]==j) | 
 |       { | 
 |         det *= m_u._valuePtr()[lastId]; | 
 |       } | 
 |     } | 
 |     // std::cout << m_sluRscale[j] << " " << m_sluCscale[j] << "   "; | 
 |   } | 
 |   return det; | 
 | } | 
 |  | 
 | #endif // EIGEN_SUPERLUSUPPORT_H |