| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_MATHFUNCTIONS_H |
| #define EIGEN_MATHFUNCTIONS_H |
| |
| template<typename T> inline T ei_random(T a, T b); |
| template<typename T> inline T ei_random(); |
| template<typename T> inline T ei_random_amplitude() |
| { |
| if(NumTraits<T>::HasFloatingPoint) return static_cast<T>(1); |
| else return static_cast<T>(10); |
| } |
| |
| template<typename T> inline typename NumTraits<T>::Real ei_hypot(T x, T y) |
| { |
| typedef typename NumTraits<T>::Real RealScalar; |
| RealScalar _x = ei_abs(x); |
| RealScalar _y = ei_abs(y); |
| T p = std::max(_x, _y); |
| T q = std::min(_x, _y); |
| T qp = q/p; |
| return p * ei_sqrt(T(1) + qp*qp); |
| } |
| |
| // the point of wrapping these casts in this helper template struct is to allow users to specialize it to custom types |
| // that may not have the needed conversion operators (especially as c++98 doesn't have explicit conversion operators). |
| |
| template<typename OldType, typename NewType> struct ei_cast_impl |
| { |
| static inline NewType run(const OldType& x) |
| { |
| return static_cast<NewType>(x); |
| } |
| }; |
| |
| template<typename OldType, typename NewType> inline NewType ei_cast(const OldType& x) |
| { |
| return ei_cast_impl<OldType, NewType>::run(x); |
| } |
| |
| |
| /************** |
| *** int *** |
| **************/ |
| |
| inline int ei_real(int x) { return x; } |
| inline int& ei_real_ref(int& x) { return x; } |
| inline int ei_imag(int) { return 0; } |
| inline int ei_conj(int x) { return x; } |
| inline int ei_abs(int x) { return std::abs(x); } |
| inline int ei_abs2(int x) { return x*x; } |
| inline int ei_sqrt(int) { ei_assert(false); return 0; } |
| inline int ei_exp(int) { ei_assert(false); return 0; } |
| inline int ei_log(int) { ei_assert(false); return 0; } |
| inline int ei_erf(int) { ei_assert(false); return 0; } |
| inline int ei_sin(int) { ei_assert(false); return 0; } |
| inline int ei_cos(int) { ei_assert(false); return 0; } |
| inline int ei_atan2(int, int) { ei_assert(false); return 0; } |
| inline int ei_pow(int x, int y) |
| { |
| int res = 1; |
| if(y < 0) return 0; |
| if(y & 1) res *= x; |
| y >>= 1; |
| while(y) |
| { |
| x *= x; |
| if(y&1) res *= x; |
| y >>= 1; |
| } |
| return res; |
| } |
| |
| template<> inline int ei_random(int a, int b) |
| { |
| // We can't just do rand()%n as only the high-order bits are really random |
| return a + static_cast<int>((b-a+1) * (std::rand() / (RAND_MAX + 1.0))); |
| } |
| template<> inline int ei_random() |
| { |
| return ei_random<int>(-ei_random_amplitude<int>(), ei_random_amplitude<int>()); |
| } |
| inline bool ei_isMuchSmallerThan(int a, int, int = NumTraits<int>::dummy_precision()) |
| { |
| return a == 0; |
| } |
| inline bool ei_isApprox(int a, int b, int = NumTraits<int>::dummy_precision()) |
| { |
| return a == b; |
| } |
| inline bool ei_isApproxOrLessThan(int a, int b, int = NumTraits<int>::dummy_precision()) |
| { |
| return a <= b; |
| } |
| |
| /************** |
| *** float *** |
| **************/ |
| |
| inline float ei_real(float x) { return x; } |
| inline float& ei_real_ref(float& x) { return x; } |
| inline float ei_imag(float) { return 0.f; } |
| inline float ei_conj(float x) { return x; } |
| inline float ei_abs(float x) { return std::abs(x); } |
| inline float ei_abs2(float x) { return x*x; } |
| inline float ei_norm1(float x) { return ei_abs(x); } |
| inline float ei_sqrt(float x) { return std::sqrt(x); } |
| inline float ei_exp(float x) { return std::exp(x); } |
| inline float ei_log(float x) { return std::log(x); } |
| #if (!defined(_MSC_VER) && !defined(__CYGWIN__)) |
| inline float ei_erf(float x) { return erff(x); } |
| #endif |
| inline float ei_sin(float x) { return std::sin(x); } |
| inline float ei_cos(float x) { return std::cos(x); } |
| inline float ei_atan2(float y, float x) { return std::atan2(y,x); } |
| inline float ei_pow(float x, float y) { return std::pow(x, y); } |
| |
| template<> inline float ei_random(float a, float b) |
| { |
| #ifdef EIGEN_NICE_RANDOM |
| int i; |
| do { i = ei_random<int>(256*int(a),256*int(b)); |
| } while(i==0); |
| return float(i)/256.f; |
| #else |
| return a + (b-a) * float(std::rand()) / float(RAND_MAX); |
| #endif |
| } |
| template<> inline float ei_random() |
| { |
| return ei_random<float>(-ei_random_amplitude<float>(), ei_random_amplitude<float>()); |
| } |
| inline bool ei_isMuchSmallerThan(float a, float b, float prec = NumTraits<float>::dummy_precision()) |
| { |
| return ei_abs(a) <= ei_abs(b) * prec; |
| } |
| inline bool ei_isApprox(float a, float b, float prec = NumTraits<float>::dummy_precision()) |
| { |
| return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec; |
| } |
| inline bool ei_isApproxOrLessThan(float a, float b, float prec = NumTraits<float>::dummy_precision()) |
| { |
| return a <= b || ei_isApprox(a, b, prec); |
| } |
| |
| /************** |
| *** double *** |
| **************/ |
| |
| inline double ei_real(double x) { return x; } |
| inline double& ei_real_ref(double& x) { return x; } |
| inline double ei_imag(double) { return 0.; } |
| inline double ei_conj(double x) { return x; } |
| inline double ei_abs(double x) { return std::abs(x); } |
| inline double ei_abs2(double x) { return x*x; } |
| inline double ei_norm1(double x) { return ei_abs(x); } |
| inline double ei_sqrt(double x) { return std::sqrt(x); } |
| inline double ei_exp(double x) { return std::exp(x); } |
| inline double ei_log(double x) { return std::log(x); } |
| #if (!defined(_MSC_VER) && !defined(__CYGWIN__)) |
| inline double ei_erf(double x) { return erf(x); } |
| #endif |
| inline double ei_sin(double x) { return std::sin(x); } |
| inline double ei_cos(double x) { return std::cos(x); } |
| inline double ei_atan2(double y, double x) { return std::atan2(y,x); } |
| inline double ei_pow(double x, double y) { return std::pow(x, y); } |
| |
| template<> inline double ei_random(double a, double b) |
| { |
| #ifdef EIGEN_NICE_RANDOM |
| int i; |
| do { i= ei_random<int>(256*int(a),256*int(b)); |
| } while(i==0); |
| return i/256.; |
| #else |
| return a + (b-a) * std::rand() / RAND_MAX; |
| #endif |
| } |
| template<> inline double ei_random() |
| { |
| return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>()); |
| } |
| inline bool ei_isMuchSmallerThan(double a, double b, double prec = NumTraits<double>::dummy_precision()) |
| { |
| return ei_abs(a) <= ei_abs(b) * prec; |
| } |
| inline bool ei_isApprox(double a, double b, double prec = NumTraits<double>::dummy_precision()) |
| { |
| return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec; |
| } |
| inline bool ei_isApproxOrLessThan(double a, double b, double prec = NumTraits<double>::dummy_precision()) |
| { |
| return a <= b || ei_isApprox(a, b, prec); |
| } |
| |
| /********************* |
| *** complex<float> *** |
| *********************/ |
| |
| inline float ei_real(const std::complex<float>& x) { return std::real(x); } |
| inline float ei_imag(const std::complex<float>& x) { return std::imag(x); } |
| inline float& ei_real_ref(std::complex<float>& x) { return reinterpret_cast<float*>(&x)[0]; } |
| inline float& ei_imag_ref(std::complex<float>& x) { return reinterpret_cast<float*>(&x)[1]; } |
| inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); } |
| inline float ei_abs(const std::complex<float>& x) { return std::abs(x); } |
| inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); } |
| inline float ei_norm1(const std::complex<float> &x) { return(ei_abs(x.real()) + ei_abs(x.imag())); } |
| inline std::complex<float> ei_sqrt(std::complex<float>x) { return std::sqrt(x); } |
| inline std::complex<float> ei_exp(std::complex<float> x) { return std::exp(x); } |
| inline std::complex<float> ei_sin(std::complex<float> x) { return std::sin(x); } |
| inline std::complex<float> ei_cos(std::complex<float> x) { return std::cos(x); } |
| inline std::complex<float> ei_atan2(std::complex<float>, std::complex<float> ) { ei_assert(false); return 0.f; } |
| |
| template<> inline std::complex<float> ei_random() |
| { |
| return std::complex<float>(ei_random<float>(), ei_random<float>()); |
| } |
| inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = NumTraits<float>::dummy_precision()) |
| { |
| return ei_abs2(a) <= ei_abs2(b) * prec * prec; |
| } |
| inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = NumTraits<float>::dummy_precision()) |
| { |
| return ei_abs2(a) <= ei_abs2(b) * prec * prec; |
| } |
| inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = NumTraits<float>::dummy_precision()) |
| { |
| return ei_isApprox(ei_real(a), ei_real(b), prec) |
| && ei_isApprox(ei_imag(a), ei_imag(b), prec); |
| } |
| // ei_isApproxOrLessThan wouldn't make sense for complex numbers |
| |
| /********************** |
| *** complex<double> *** |
| **********************/ |
| |
| inline double ei_real(const std::complex<double>& x) { return std::real(x); } |
| inline double ei_imag(const std::complex<double>& x) { return std::imag(x); } |
| inline double& ei_real_ref(std::complex<double>& x) { return reinterpret_cast<double*>(&x)[0]; } |
| inline double& ei_imag_ref(std::complex<double>& x) { return reinterpret_cast<double*>(&x)[1]; } |
| inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); } |
| inline double ei_abs(const std::complex<double>& x) { return std::abs(x); } |
| inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); } |
| inline double ei_norm1(const std::complex<double> &x) { return(ei_abs(x.real()) + ei_abs(x.imag())); } |
| inline std::complex<double> ei_sqrt(std::complex<double>x) { return std::sqrt(x); } |
| inline std::complex<double> ei_exp(std::complex<double> x) { return std::exp(x); } |
| inline std::complex<double> ei_sin(std::complex<double> x) { return std::sin(x); } |
| inline std::complex<double> ei_cos(std::complex<double> x) { return std::cos(x); } |
| inline std::complex<double> ei_atan2(std::complex<double>, std::complex<double>) { ei_assert(false); return 0.; } |
| |
| template<> inline std::complex<double> ei_random() |
| { |
| return std::complex<double>(ei_random<double>(), ei_random<double>()); |
| } |
| inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = NumTraits<double>::dummy_precision()) |
| { |
| return ei_abs2(a) <= ei_abs2(b) * prec * prec; |
| } |
| inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = NumTraits<double>::dummy_precision()) |
| { |
| return ei_abs2(a) <= ei_abs2(b) * prec * prec; |
| } |
| inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = NumTraits<double>::dummy_precision()) |
| { |
| return ei_isApprox(ei_real(a), ei_real(b), prec) |
| && ei_isApprox(ei_imag(a), ei_imag(b), prec); |
| } |
| // ei_isApproxOrLessThan wouldn't make sense for complex numbers |
| |
| |
| /****************** |
| *** long double *** |
| ******************/ |
| |
| inline long double ei_real(long double x) { return x; } |
| inline long double& ei_real_ref(long double& x) { return x; } |
| inline long double ei_imag(long double) { return 0.; } |
| inline long double ei_conj(long double x) { return x; } |
| inline long double ei_abs(long double x) { return std::abs(x); } |
| inline long double ei_abs2(long double x) { return x*x; } |
| inline long double ei_sqrt(long double x) { return std::sqrt(x); } |
| inline long double ei_exp(long double x) { return std::exp(x); } |
| inline long double ei_log(long double x) { return std::log(x); } |
| #if (!defined(_MSC_VER) && !defined(__CYGWIN__)) |
| inline long double ei_erf(long double x) { return erfl(x); } |
| #endif |
| inline long double ei_sin(long double x) { return std::sin(x); } |
| inline long double ei_cos(long double x) { return std::cos(x); } |
| inline long double ei_atan2(long double y, long double x) { return std::atan2(y,x); } |
| inline long double ei_pow(long double x, long double y) { return std::pow(x, y); } |
| |
| template<> inline long double ei_random(long double a, long double b) |
| { |
| return ei_random<double>(static_cast<double>(a),static_cast<double>(b)); |
| } |
| template<> inline long double ei_random() |
| { |
| return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>()); |
| } |
| inline bool ei_isMuchSmallerThan(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision()) |
| { |
| return ei_abs(a) <= ei_abs(b) * prec; |
| } |
| inline bool ei_isApprox(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision()) |
| { |
| return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec; |
| } |
| inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision()) |
| { |
| return a <= b || ei_isApprox(a, b, prec); |
| } |
| |
| /************** |
| *** bool *** |
| **************/ |
| |
| inline bool ei_real(bool x) { return x; } |
| inline bool& ei_real_ref(bool& x) { return x; } |
| inline bool ei_imag(bool) { return 0; } |
| inline bool ei_conj(bool x) { return x; } |
| inline bool ei_abs(bool x) { return x; } |
| inline bool ei_abs2(bool x) { return x; } |
| inline bool ei_sqrt(bool x) { return x; } |
| |
| template<> inline bool ei_random() |
| { |
| return (ei_random<int>(0,1) == 1); |
| } |
| inline bool ei_isMuchSmallerThan(bool a, bool, bool = NumTraits<bool>::dummy_precision()) |
| { |
| return !a; |
| } |
| inline bool ei_isApprox(bool a, bool b, bool = NumTraits<bool>::dummy_precision()) |
| { |
| return a == b; |
| } |
| inline bool ei_isApproxOrLessThan(bool a, bool b, bool = NumTraits<bool>::dummy_precision()) |
| { |
| return int(a) <= int(b); |
| } |
| |
| #endif // EIGEN_MATHFUNCTIONS_H |