blob: b31f77e9bed130a1e23ec587db24e53bbfbcd820 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
#define EIGEN_SELFADJOINTEIGENSOLVER_H
/** \eigenvalues_module \ingroup Eigenvalues_Module
* \nonstableyet
*
* \class SelfAdjointEigenSolver
*
* \brief Eigen values/vectors solver for selfadjoint matrix
*
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
*
* \note MatrixType must be an actual Matrix type, it can't be an expression type.
*
* \sa MatrixBase::eigenvalues(), class EigenSolver
*/
template<typename _MatrixType> class SelfAdjointEigenSolver
{
public:
typedef _MatrixType MatrixType;
enum {
Size = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
typedef typename ei_plain_col_type<MatrixType, RealScalar>::type RealVectorType;
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
// typedef typename TridiagonalizationType::TridiagonalMatrixType TridiagonalMatrixType;
SelfAdjointEigenSolver()
: m_eivec(int(Size), int(Size)),
m_eivalues(int(Size))
{
ei_assert(Size!=Dynamic);
}
SelfAdjointEigenSolver(int size)
: m_eivec(size, size),
m_eivalues(size)
{}
/** Constructors computing the eigenvalues of the selfadjoint matrix \a matrix,
* as well as the eigenvectors if \a computeEigenvectors is true.
*
* \sa compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool)
*/
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols())
{
compute(matrix, computeEigenvectors);
}
/** Constructors computing the eigenvalues of the generalized eigen problem
* \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
* and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
* are computed if \a computeEigenvectors is true.
*
* \sa compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool)
*/
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
: m_eivec(matA.rows(), matA.cols()),
m_eivalues(matA.cols())
{
compute(matA, matB, computeEigenvectors);
}
SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
SelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true);
/** \returns the computed eigen vectors as a matrix of column vectors */
MatrixType eigenvectors(void) const
{
#ifndef NDEBUG
ei_assert(m_eigenvectorsOk);
#endif
return m_eivec;
}
/** \returns the computed eigen values */
RealVectorType eigenvalues(void) const { return m_eivalues; }
/** \returns the positive square root of the matrix
*
* \note the matrix itself must be positive in order for this to make sense.
*/
MatrixType operatorSqrt() const
{
return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
/** \returns the positive inverse square root of the matrix
*
* \note the matrix itself must be positive definite in order for this to make sense.
*/
MatrixType operatorInverseSqrt() const
{
return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
protected:
MatrixType m_eivec;
RealVectorType m_eivalues;
#ifndef NDEBUG
bool m_eigenvectorsOk;
#endif
};
#ifndef EIGEN_HIDE_HEAVY_CODE
/** \internal
*
* \eigenvalues_module \ingroup Eigenvalues_Module
*
* Performs a QR step on a tridiagonal symmetric matrix represented as a
* pair of two vectors \a diag and \a subdiag.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
*
* For compilation efficiency reasons, this procedure does not use eigen expression
* for its arguments.
*
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
* "implicit symmetric QR step with Wilkinson shift"
*/
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n);
/** Computes the eigenvalues of the selfadjoint matrix \a matrix,
* as well as the eigenvectors if \a computeEigenvectors is true.
*
* \sa SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool)
*/
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
{
#ifndef NDEBUG
m_eigenvectorsOk = computeEigenvectors;
#endif
assert(matrix.cols() == matrix.rows());
int n = matrix.cols();
m_eivalues.resize(n,1);
m_eivec.resize(n,n);
if(n==1)
{
m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0));
m_eivec.setOnes();
return *this;
}
m_eivec = matrix;
// FIXME, should tridiag be a local variable of this function or an attribute of SelfAdjointEigenSolver ?
// the latter avoids multiple memory allocation when the same SelfAdjointEigenSolver is used multiple times...
// (same for diag and subdiag)
RealVectorType& diag = m_eivalues;
typename TridiagonalizationType::SubDiagonalType subdiag(n-1);
TridiagonalizationType::decomposeInPlace(m_eivec, diag, subdiag, computeEigenvectors);
int end = n-1;
int start = 0;
while (end>0)
{
for (int i = start; i<end; ++i)
if (ei_isMuchSmallerThan(ei_abs(subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1]))))
subdiag[i] = 0;
// find the largest unreduced block
while (end>0 && subdiag[end-1]==0)
end--;
if (end<=0)
break;
start = end - 1;
while (start>0 && subdiag[start-1]!=0)
start--;
ei_tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
}
// Sort eigenvalues and corresponding vectors.
// TODO make the sort optional ?
// TODO use a better sort algorithm !!
for (int i = 0; i < n-1; ++i)
{
int k;
m_eivalues.segment(i,n-i).minCoeff(&k);
if (k > 0)
{
std::swap(m_eivalues[i], m_eivalues[k+i]);
m_eivec.col(i).swap(m_eivec.col(k+i));
}
}
return *this;
}
/** Computes the eigenvalues of the generalized eigen problem
* \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
* and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
* are computed if \a computeEigenvectors is true.
*
* \sa SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool)
*/
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::
compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
{
ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
// Compute the cholesky decomposition of matB = L L'
LLT<MatrixType> cholB(matB);
// compute C = inv(L) A inv(L')
MatrixType matC = matA;
cholB.matrixL().solveInPlace(matC);
// FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' :
matC.adjointInPlace();
cholB.matrixL().solveInPlace(matC);
matC.adjointInPlace();
// this version works too:
// matC = matC.transpose();
// cholB.matrixL().conjugate().template marked<Lower>().solveTriangularInPlace(matC);
// matC = matC.transpose();
// FIXME: this should work: (currently it only does for small matrices)
// Transpose<MatrixType> trMatC(matC);
// cholB.matrixL().conjugate().eval().template marked<Lower>().solveTriangularInPlace(trMatC);
compute(matC, computeEigenvectors);
if (computeEigenvectors)
{
// transform back the eigen vectors: evecs = inv(U) * evecs
cholB.matrixU().solveInPlace(m_eivec);
for (int i=0; i<m_eivec.cols(); ++i)
m_eivec.col(i) = m_eivec.col(i).normalized();
}
return *this;
}
#endif // EIGEN_HIDE_HEAVY_CODE
/** \eigenvalues_module
*
* \returns a vector listing the eigenvalues of this matrix.
*/
template<typename Derived>
inline Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1>
MatrixBase<Derived>::eigenvalues() const
{
ei_assert(Flags&SelfAdjoint);
return SelfAdjointEigenSolver<typename Derived::PlainObject>(eval(),false).eigenvalues();
}
template<typename Derived, bool IsSelfAdjoint>
struct ei_operatorNorm_selector
{
static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
operatorNorm(const MatrixBase<Derived>& m)
{
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
return m.eigenvalues().cwiseAbs().maxCoeff();
}
};
template<typename Derived> struct ei_operatorNorm_selector<Derived, false>
{
static inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
operatorNorm(const MatrixBase<Derived>& m)
{
typename Derived::PlainObject m_eval(m);
// FIXME if it is really guaranteed that the eigenvalues are already sorted,
// then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
return ei_sqrt(
(m_eval*m_eval.adjoint())
.template marked<SelfAdjoint>()
.eigenvalues()
.maxCoeff()
);
}
};
/** \eigenvalues_module
*
* \returns the matrix norm of this matrix.
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::operatorNorm() const
{
return ei_operatorNorm_selector<Derived, Flags&SelfAdjoint>
::operatorNorm(derived());
}
#ifndef EIGEN_EXTERN_INSTANTIATIONS
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)
{
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
RealScalar e2 = ei_abs2(subdiag[end-1]);
RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2));
RealScalar x = diag[start] - mu;
RealScalar z = subdiag[start];
for (int k = start; k < end; ++k)
{
PlanarRotation<RealScalar> rot;
rot.makeGivens(x, z);
// do T = G' T G
RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
if (k > start)
subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
x = subdiag[k];
if (k < end - 1)
{
z = -rot.s() * subdiag[k+1];
subdiag[k + 1] = rot.c() * subdiag[k+1];
}
// apply the givens rotation to the unit matrix Q = Q * G
if (matrixQ)
{
Map<Matrix<Scalar,Dynamic,Dynamic> > q(matrixQ,n,n);
q.applyOnTheRight(k,k+1,rot);
}
}
}
#endif
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H