| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/LU> |
| |
| template<typename MatrixType> void eigensolver(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| ComplexEigenSolver.h, and indirectly ComplexSchur.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a; |
| |
| ComplexEigenSolver<MatrixType> ei0(symmA); |
| VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); |
| |
| ComplexEigenSolver<MatrixType> ei1(a); |
| VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| |
| // Regression test for issue #66 |
| MatrixType z = MatrixType::Zero(rows,cols); |
| ComplexEigenSolver<MatrixType> eiz(z); |
| VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); |
| } |
| |
| void test_eigensolver_complex() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); |
| CALL_SUBTEST_2( eigensolver(MatrixXcd(14,14)) ); |
| CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); |
| CALL_SUBTEST_4( eigensolver(Matrix3f()) ); |
| } |
| } |