| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename Scalar> void trmm(int size,int othersize) |
| { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Matrix<Scalar,Dynamic,Dynamic,ColMajor> tri(size,size), upTri(size,size), loTri(size,size); |
| Matrix<Scalar,Dynamic,Dynamic,ColMajor> ge1(size,othersize), ge2(10,size), ge3; |
| Matrix<Scalar,Dynamic,Dynamic,RowMajor> rge3; |
| |
| Scalar s1 = ei_random<Scalar>(), |
| s2 = ei_random<Scalar>(); |
| |
| tri.setRandom(); |
| loTri = tri.template triangularView<Lower>(); |
| upTri = tri.template triangularView<Upper>(); |
| ge1.setRandom(); |
| ge2.setRandom(); |
| |
| VERIFY_IS_APPROX( ge3 = tri.template triangularView<Lower>() * ge1, loTri * ge1); |
| VERIFY_IS_APPROX(rge3 = tri.template triangularView<Lower>() * ge1, loTri * ge1); |
| VERIFY_IS_APPROX( ge3 = tri.template triangularView<Upper>() * ge1, upTri * ge1); |
| VERIFY_IS_APPROX(rge3 = tri.template triangularView<Upper>() * ge1, upTri * ge1); |
| VERIFY_IS_APPROX( ge3 = (s1*tri.adjoint()).template triangularView<Upper>() * (s2*ge1), s1*loTri.adjoint() * (s2*ge1)); |
| VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<Upper>() * ge1, loTri.adjoint() * ge1); |
| VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<Lower>() * ge1, upTri.adjoint() * ge1); |
| VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<Lower>() * ge1, upTri.adjoint() * ge1); |
| VERIFY_IS_APPROX( ge3 = tri.template triangularView<Lower>() * ge2.adjoint(), loTri * ge2.adjoint()); |
| VERIFY_IS_APPROX(rge3 = tri.template triangularView<Lower>() * ge2.adjoint(), loTri * ge2.adjoint()); |
| VERIFY_IS_APPROX( ge3 = tri.template triangularView<Upper>() * ge2.adjoint(), upTri * ge2.adjoint()); |
| VERIFY_IS_APPROX(rge3 = tri.template triangularView<Upper>() * ge2.adjoint(), upTri * ge2.adjoint()); |
| VERIFY_IS_APPROX( ge3 = (s1*tri).adjoint().template triangularView<Upper>() * ge2.adjoint(), ei_conj(s1) * loTri.adjoint() * ge2.adjoint()); |
| VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<Upper>() * ge2.adjoint(), loTri.adjoint() * ge2.adjoint()); |
| VERIFY_IS_APPROX( ge3 = tri.adjoint().template triangularView<Lower>() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint()); |
| VERIFY_IS_APPROX(rge3 = tri.adjoint().template triangularView<Lower>() * ge2.adjoint(), upTri.adjoint() * ge2.adjoint()); |
| } |
| |
| void test_product_trmm() |
| { |
| for(int i = 0; i < g_repeat ; i++) |
| { |
| CALL_SUBTEST_1((trmm<float>(ei_random<int>(1,320),ei_random<int>(1,320)))); |
| CALL_SUBTEST_2((trmm<std::complex<double> >(ei_random<int>(1,320),ei_random<int>(1,320)))); |
| } |
| } |