| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/AutoDiff> |
| |
| template<typename Scalar> |
| EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) |
| { |
| // return x+std::sin(y); |
| EIGEN_ASM_COMMENT("mybegin"); |
| return static_cast<Scalar>(x*2 - std::pow(x,2) + 2*std::sqrt(y*y) - 4 * std::sin(x) + 2 * std::cos(y) - std::exp(-0.5*x*x)); |
| //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; |
| EIGEN_ASM_COMMENT("myend"); |
| } |
| |
| template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> |
| struct TestFunc1 |
| { |
| typedef _Scalar Scalar; |
| enum { |
| InputsAtCompileTime = NX, |
| ValuesAtCompileTime = NY |
| }; |
| typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; |
| typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; |
| typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; |
| |
| int m_inputs, m_values; |
| |
| TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} |
| TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {} |
| |
| int inputs() const { return m_inputs; } |
| int values() const { return m_values; } |
| |
| template<typename T> |
| void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const |
| { |
| Matrix<T,ValuesAtCompileTime,1>& v = *_v; |
| |
| v[0] = 2 * x[0] * x[0] + x[0] * x[1]; |
| v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; |
| if(inputs()>2) |
| { |
| v[0] += 0.5 * x[2]; |
| v[1] += x[2]; |
| } |
| if(values()>2) |
| { |
| v[2] = 3 * x[1] * x[0] * x[0]; |
| } |
| if (inputs()>2 && values()>2) |
| v[2] *= x[2]; |
| } |
| |
| void operator() (const InputType& x, ValueType* v, JacobianType* _j) const |
| { |
| (*this)(x, v); |
| |
| if(_j) |
| { |
| JacobianType& j = *_j; |
| |
| j(0,0) = 4 * x[0] + x[1]; |
| j(1,0) = 3 * x[1]; |
| |
| j(0,1) = x[0]; |
| j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; |
| |
| if (inputs()>2) |
| { |
| j(0,2) = 0.5; |
| j(1,2) = 1; |
| } |
| if(values()>2) |
| { |
| j(2,0) = 3 * x[1] * 2 * x[0]; |
| j(2,1) = 3 * x[0] * x[0]; |
| } |
| if (inputs()>2 && values()>2) |
| { |
| j(2,0) *= x[2]; |
| j(2,1) *= x[2]; |
| |
| j(2,2) = 3 * x[1] * x[0] * x[0]; |
| j(2,2) = 3 * x[1] * x[0] * x[0]; |
| } |
| } |
| } |
| }; |
| |
| template<typename Func> void forward_jacobian(const Func& f) |
| { |
| typename Func::InputType x = Func::InputType::Random(f.inputs()); |
| typename Func::ValueType y(f.values()), yref(f.values()); |
| typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); |
| |
| jref.setZero(); |
| yref.setZero(); |
| f(x,&yref,&jref); |
| // std::cerr << y.transpose() << "\n\n";; |
| // std::cerr << j << "\n\n";; |
| |
| j.setZero(); |
| y.setZero(); |
| AutoDiffJacobian<Func> autoj(f); |
| autoj(x, &y, &j); |
| // std::cerr << y.transpose() << "\n\n";; |
| // std::cerr << j << "\n\n";; |
| |
| VERIFY_IS_APPROX(y, yref); |
| VERIFY_IS_APPROX(j, jref); |
| } |
| |
| void test_autodiff_scalar() |
| { |
| std::cerr << foo<float>(1,2) << "\n"; |
| typedef AutoDiffScalar<Vector2f> AD; |
| AD ax(1,Vector2f::UnitX()); |
| AD ay(2,Vector2f::UnitY()); |
| foo<AD>(ax,ay); |
| std::cerr << foo<AD>(ax,ay).value() << " <> " |
| << foo<AD>(ax,ay).derivatives().transpose() << "\n\n"; |
| } |
| |
| void test_autodiff_jacobian() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); |
| CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); |
| } |
| } |
| |
| void test_autodiff() |
| { |
| test_autodiff_scalar(); |
| test_autodiff_jacobian(); |
| } |
| |