| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_MAP_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_MAP_H |
| |
| namespace Eigen { |
| |
| template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride; |
| |
| |
| /** \class TensorMap |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief A tensor expression mapping an existing array of data. |
| * |
| */ |
| |
| template<typename PlainObjectType> class TensorMap : public TensorBase<TensorMap<PlainObjectType> > |
| { |
| public: |
| typedef TensorMap<PlainObjectType> Self; |
| typedef typename PlainObjectType::Base Base; |
| typedef typename Eigen::internal::nested<Self>::type Nested; |
| typedef typename internal::traits<PlainObjectType>::StorageKind StorageKind; |
| typedef typename internal::traits<PlainObjectType>::Index Index; |
| typedef typename internal::traits<PlainObjectType>::Scalar Scalar; |
| typedef typename internal::packet_traits<Scalar>::type PacketScalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename Base::CoeffReturnType CoeffReturnType; |
| |
| /* typedef typename internal::conditional< |
| bool(internal::is_lvalue<PlainObjectType>::value), |
| Scalar *, |
| const Scalar *>::type |
| PointerType;*/ |
| typedef Scalar* PointerType; |
| typedef PointerType PointerArgType; |
| |
| // Fixed size plain object type only |
| /* EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr) : m_data(dataPtr) { |
| // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. |
| //EIGEN_STATIC_ASSERT(1 == PlainObjectType::NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| // todo: add assert to ensure we don't screw up here. |
| }*/ |
| |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension) : m_data(dataPtr), m_dimensions(array<DenseIndex, PlainObjectType::NumIndices>({{firstDimension}})) { |
| // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(1 == PlainObjectType::NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| |
| #ifdef EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE TensorMap(PointerArgType dataPtr, Index firstDimension, IndexTypes... otherDimensions) : m_data(dataPtr), m_dimensions(array<DenseIndex, PlainObjectType::NumIndices>({{firstDimension, otherDimensions...}})) { |
| // The number of dimensions used to construct a tensor must be equal to the rank of the tensor. |
| EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == PlainObjectType::NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| } |
| #endif |
| |
| inline TensorMap(PointerArgType dataPtr, const array<Index, PlainObjectType::NumIndices>& dimensions) |
| : m_data(dataPtr), m_dimensions(dimensions) |
| { } |
| |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Index dimension(Index n) const { return m_dimensions[n]; } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const typename PlainObjectType::Dimensions& dimensions() const { return m_dimensions; } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Index size() const { return m_dimensions.TotalSize(); } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Scalar* data() { return m_data; } |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const Scalar* data() const { return m_data; } |
| |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const |
| { |
| eigen_internal_assert(index >= 0 && index < size()); |
| return m_data[index]; |
| } |
| |
| #ifdef EIGEN_HAS_VARIADIC_TEMPLATES |
| template<typename... IndexTypes> EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Scalar& operator()(Index firstIndex, IndexTypes... otherIndices) |
| { |
| static_assert(sizeof...(otherIndices) + 1 == PlainObjectType::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); |
| if (PlainObjectType::Options&RowMajor) { |
| const Index index = m_dimensions.IndexOfRowMajor(array<Index, PlainObjectType::NumIndices>{{firstIndex, otherIndices...}}); |
| return m_data[index]; |
| } else { |
| const Index index = m_dimensions.IndexOfColMajor(array<Index, PlainObjectType::NumIndices>{{firstIndex, otherIndices...}}); |
| return m_data[index]; |
| } |
| } |
| #endif |
| |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| Self& operator=(const OtherDerived& other) |
| { |
| internal::TensorAssign<Self, const OtherDerived>::run(*this, other); |
| return *this; |
| } |
| |
| private: |
| typename PlainObjectType::Scalar* m_data; |
| typename PlainObjectType::Dimensions m_dimensions; |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_MAP_H |