blob: c3d5da7a177517870b0d21cfc7ee3bbff09d6ad3 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include <iostream>
#include <bench/BenchUtil.h>
#include <complex>
#include <vector>
#include <Eigen/Core>
#include <unsupported/Eigen/FFT>
using namespace Eigen;
using namespace std;
template <typename T>
string nameof();
template <> string nameof<float>() {return "float";}
template <> string nameof<double>() {return "double";}
template <> string nameof<long double>() {return "long double";}
#ifndef TYPE
#define TYPE float
#endif
#ifndef NFFT
#define NFFT 1024
#endif
#ifndef NDATA
#define NDATA 1000000
#endif
using namespace Eigen;
template <typename T>
void bench(int nfft,bool fwd,bool unscaled=false, bool halfspec=false)
{
typedef typename NumTraits<T>::Real Scalar;
typedef typename std::complex<Scalar> Complex;
int nits = NDATA/nfft;
vector<T> inbuf(nfft);
vector<Complex > outbuf(nfft);
FFT< Scalar > fft;
if (unscaled) {
fft.SetFlag(fft.Unscaled);
cout << "unscaled ";
}
if (halfspec) {
fft.SetFlag(fft.HalfSpectrum);
cout << "halfspec ";
}
std::fill(inbuf.begin(),inbuf.end(),0);
fft.fwd( outbuf , inbuf);
BenchTimer timer;
timer.reset();
for (int k=0;k<8;++k) {
timer.start();
if (fwd)
for(int i = 0; i < nits; i++)
fft.fwd( outbuf , inbuf);
else
for(int i = 0; i < nits; i++)
fft.inv(inbuf,outbuf);
timer.stop();
}
cout << nameof<Scalar>() << " ";
double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits );
if ( NumTraits<T>::IsComplex ) {
cout << "complex";
}else{
cout << "real ";
mflops /= 2;
}
if (fwd)
cout << " fwd";
else
cout << " inv";
cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n";
}
int main(int argc,char ** argv)
{
bench<complex<float> >(NFFT,true);
bench<complex<float> >(NFFT,false);
bench<float>(NFFT,true);
bench<float>(NFFT,false);
bench<float>(NFFT,false,true);
bench<float>(NFFT,false,true,true);
bench<complex<double> >(NFFT,true);
bench<complex<double> >(NFFT,false);
bench<double>(NFFT,true);
bench<double>(NFFT,false);
bench<complex<long double> >(NFFT,true);
bench<complex<long double> >(NFFT,false);
bench<long double>(NFFT,true);
bench<long double>(NFFT,false);
return 0;
}