| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_POWER |
| #define EIGEN_MATRIX_POWER |
| |
| #ifndef M_PI |
| #define M_PI 3.141592653589793238462643383279503L |
| #endif |
| |
| namespace Eigen { |
| |
| /** |
| * \ingroup MatrixFunctions_Module |
| * |
| * \brief Class for computing matrix powers. |
| * |
| * \tparam MatrixType type of the base, expected to be an instantiation |
| * of the Matrix class template. |
| * \tparam PlainObject type of the multiplier. |
| */ |
| template<typename MatrixType, typename PlainObject = MatrixType> |
| class MatrixPower |
| { |
| private: |
| typedef internal::traits<MatrixType> Traits; |
| static const int Rows = Traits::RowsAtCompileTime; |
| static const int Cols = Traits::ColsAtCompileTime; |
| static const int Options = Traits::Options; |
| static const int MaxRows = Traits::MaxRowsAtCompileTime; |
| static const int MaxCols = Traits::MaxColsAtCompileTime; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| typedef typename MatrixType::Index Index; |
| typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix; |
| typedef Array<ComplexScalar, Rows, 1, ColMajor, MaxRows> ComplexArray; |
| |
| public: |
| /** |
| * \brief Constructor. |
| * |
| * \param[in] A the base of the matrix power. |
| * \param[in] p the exponent of the matrix power. |
| * \param[in] b the multiplier. |
| */ |
| MatrixPower(const MatrixType& A, RealScalar p, const PlainObject& b) : |
| m_A(A), |
| m_p(p), |
| m_b(b), |
| m_dimA(A.cols()), |
| m_dimb(b.cols()) |
| { /* empty body */ } |
| |
| /** |
| * \brief Compute the matrix power. |
| * |
| * \param[out] result \f$ A^p b \f$, as specified in the constructor. |
| */ |
| template<typename ResultType> void compute(ResultType& result); |
| |
| private: |
| /** |
| * \brief Compute the matrix to integral power. |
| * |
| * If \p b is \em fatter than \p A, it computes \f$ A^{p_{\textrm int}} |
| * \f$ first, and then multiplies it with \p b. Otherwise, |
| * #computeChainProduct optimizes the expression. |
| * |
| * \sa computeChainProduct(ResultType&); |
| */ |
| template<typename ResultType> |
| void computeIntPower(ResultType& result); |
| |
| /** |
| * \brief Convert integral power of the matrix into chain product. |
| * |
| * This optimizes the matrix expression. It automatically chooses binary |
| * powering or matrix chain multiplication or solving the linear system |
| * repetitively, according to which algorithm costs less. |
| */ |
| template<typename ResultType> |
| void computeChainProduct(ResultType&); |
| |
| /** \brief Compute the cost of binary powering. */ |
| static int computeCost(RealScalar); |
| |
| /** \brief Solve the linear system repetitively. */ |
| template<typename ResultType> |
| void partialPivLuSolve(ResultType&, RealScalar); |
| |
| /** \brief Compute Schur decomposition of #m_A. */ |
| void computeSchurDecomposition(); |
| |
| /** |
| * \brief Split #m_p into integral part and fractional part. |
| * |
| * This method stores the integral part \f$ p_{\textrm int} \f$ into |
| * #m_pInt and the fractional part \f$ p_{\textrm frac} \f$ into |
| * #m_pFrac, where #m_pFrac is in the interval \f$ (-1,1) \f$. To |
| * choose between the possibilities below, it considers the computation |
| * of \f$ A^{p_1} \f$ and \f$ A^{p_2} \f$ and determines which of these |
| * computations is the better conditioned. |
| */ |
| void getFractionalExponent(); |
| |
| /** \brief Compute power of 2x2 triangular matrix. */ |
| void compute2x2(RealScalar p); |
| |
| /** |
| * \brief Compute power of triangular matrices with size > 2. |
| * \details This uses a Schur-Padé algorithm. |
| */ |
| void computeBig(); |
| |
| /** \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */ |
| inline int getPadeDegree(double); |
| |
| /** \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */ |
| inline int getPadeDegree(float); |
| |
| /** \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */ |
| inline int getPadeDegree(long double); |
| |
| /** \brief Compute Padé approximation to matrix fractional power. */ |
| void computePade(const int& degree, const ComplexMatrix& IminusT); |
| |
| /** \brief Get a certain coefficient of the Padé approximation. */ |
| inline RealScalar coeff(const int& degree); |
| |
| /** |
| * \brief Store the fractional power into #m_tmp. |
| * |
| * This intended for complex matrices. |
| */ |
| void computeTmp(ComplexScalar); |
| |
| /** |
| * \brief Store the fractional power into #m_tmp. |
| * |
| * This is intended for real matrices. It takes the real part of |
| * \f$ U T^{p_{\textrm frac}} U^H \f$. |
| * |
| * \sa computeTmp(ComplexScalar); |
| */ |
| void computeTmp(RealScalar); |
| |
| const MatrixType& m_A; ///< \brief Reference to the matrix base. |
| const RealScalar m_p; ///< \brief The real exponent. |
| const PlainObject& m_b; ///< \brief Reference to the multiplier. |
| const Index m_dimA; ///< \brief The dimension of #m_A, equivalent to %m_A.cols(). |
| const Index m_dimb; ///< \brief The dimension of #m_b, equivalent to %m_b.cols(). |
| MatrixType m_tmp; ///< \brief Used for temporary storage. |
| RealScalar m_pInt; ///< \brief Integral part of #m_p. |
| RealScalar m_pFrac; ///< \brief Fractional part of #m_p. |
| ComplexMatrix m_T; ///< \brief Triangular part of Schur decomposition. |
| ComplexMatrix m_U; ///< \brief Unitary part of Schur decomposition. |
| ComplexMatrix m_fT; ///< \brief #m_T to the power of #m_pFrac. |
| ComplexArray m_logTdiag; ///< \brief Logarithm of the main diagonal of #m_T. |
| }; |
| |
| template<typename MatrixType, typename PlainObject> |
| template<typename ResultType> |
| void MatrixPower<MatrixType,PlainObject>::compute(ResultType& result) |
| { |
| using std::floor; |
| using std::pow; |
| |
| m_pInt = floor(m_p + RealScalar(0.5)); |
| m_pFrac = m_p - m_pInt; |
| |
| if (!m_pFrac) { |
| computeIntPower(result); |
| } else if (m_dimA == 1) |
| result = pow(m_A(0,0), m_p) * m_b; |
| else { |
| computeSchurDecomposition(); |
| getFractionalExponent(); |
| computeIntPower(result); |
| if (m_dimA == 2) |
| compute2x2(m_pFrac); |
| else |
| computeBig(); |
| computeTmp(Scalar()); |
| result = m_tmp * result; |
| } |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| template<typename ResultType> |
| void MatrixPower<MatrixType,PlainObject>::computeIntPower(ResultType& result) |
| { |
| MatrixType tmp; |
| if (m_dimb > m_dimA) { |
| tmp = MatrixType::Identity(m_dimA, m_dimA); |
| computeChainProduct(tmp); |
| result.noalias() = tmp * m_b; |
| } else { |
| result = m_b; |
| computeChainProduct(result); |
| } |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| template<typename ResultType> |
| void MatrixPower<MatrixType,PlainObject>::computeChainProduct(ResultType& result) |
| { |
| using std::abs; |
| using std::fmod; |
| using std::ldexp; |
| |
| RealScalar p = abs(m_pInt); |
| int cost = computeCost(p); |
| |
| if (m_pInt < RealScalar(0)) { |
| if (p * m_dimb <= cost * m_dimA && m_dimA > 2) { |
| partialPivLuSolve(result, p); |
| return; |
| } else { |
| m_tmp = m_A.inverse(); |
| } |
| } else { |
| m_tmp = m_A; |
| } |
| while (p * m_dimb > cost * m_dimA) { |
| if (fmod(p, RealScalar(2)) >= RealScalar(1)) { |
| result = m_tmp * result; |
| cost--; |
| } |
| m_tmp *= m_tmp; |
| cost--; |
| p = ldexp(p, -1); |
| } |
| for (; p >= RealScalar(1); p--) |
| result = m_tmp * result; |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| int MatrixPower<MatrixType,PlainObject>::computeCost(RealScalar p) |
| { |
| using std::frexp; |
| using std::ldexp; |
| int cost, tmp; |
| |
| frexp(p, &cost); |
| while (frexp(p, &tmp), tmp > 0) { |
| p -= ldexp(RealScalar(0.5), tmp); |
| cost++; |
| } |
| return cost; |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| template<typename ResultType> |
| void MatrixPower<MatrixType,PlainObject>::partialPivLuSolve(ResultType& result, RealScalar p) |
| { |
| const PartialPivLU<MatrixType> Asolver(m_A); |
| for (; p >= RealScalar(1); p--) |
| result = Asolver.solve(result); |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::computeSchurDecomposition() |
| { |
| const ComplexSchur<MatrixType> schurOfA(m_A); |
| m_T = schurOfA.matrixT(); |
| m_U = schurOfA.matrixU(); |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::getFractionalExponent() |
| { |
| using std::pow; |
| typedef Array<RealScalar, Rows, 1, ColMajor, MaxRows> RealArray; |
| |
| const ComplexArray Tdiag = m_T.diagonal(); |
| const RealArray absTdiag = Tdiag.abs(); |
| const RealScalar maxAbsEival = absTdiag.maxCoeff(); |
| const RealScalar minAbsEival = absTdiag.minCoeff(); |
| |
| m_logTdiag = Tdiag.log(); |
| if (m_pFrac > RealScalar(0.5) && // This is just a shortcut. |
| m_pFrac > (RealScalar(1) - m_pFrac) * pow(maxAbsEival/minAbsEival, m_pFrac)) { |
| m_pFrac--; |
| m_pInt++; |
| } |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::compute2x2(RealScalar p) |
| { |
| using std::abs; |
| using std::ceil; |
| using std::exp; |
| using std::imag; |
| using std::ldexp; |
| using std::pow; |
| using std::sinh; |
| |
| int i, j, unwindingNumber; |
| ComplexScalar w; |
| |
| m_fT(0,0) = pow(m_T(0,0), p); |
| for (j = 1; j < m_dimA; j++) { |
| i = j - 1; |
| m_fT(j,j) = pow(m_T(j,j), p); |
| |
| if (m_T(i,i) == m_T(j,j)) { |
| m_fT(i,j) = p * pow(m_T(i,j), p - RealScalar(1)); |
| } else if (abs(m_T(i,i)) < ldexp(abs(m_T(j,j)), -1) || abs(m_T(j,j)) < ldexp(abs(m_T(i,i)), -1)) { |
| m_fT(i,j) = m_T(i,j) * (m_fT(j,j) - m_fT(i,i)) / (m_T(j,j) - m_T(i,i)); |
| } else { |
| // computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i)) |
| unwindingNumber = ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)); |
| w = internal::atanh2(m_T(j,j) - m_T(i,i), m_T(j,j) + m_T(i,i)) + ComplexScalar(0, M_PI * unwindingNumber); |
| m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) * |
| sinh(p * w) / (m_T(j,j) - m_T(i,i)); |
| } |
| } |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::computeBig() |
| { |
| using std::ldexp; |
| const int digits = std::numeric_limits<RealScalar>::digits; |
| const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision |
| digits <= 53? 2.789358995219730e-1: // double precision |
| digits <= 64? 2.4471944416607995472e-1L: // extended precision |
| digits <= 106? 1.1016843812851143391275867258512e-01: // double-double |
| 9.134603732914548552537150753385375e-02; // quadruple precision |
| int degree, degree2, numberOfSquareRoots = 0, numberOfExtraSquareRoots = 0; |
| ComplexMatrix IminusT, sqrtT, T = m_T; |
| RealScalar normIminusT; |
| |
| while (true) { |
| IminusT = ComplexMatrix::Identity(m_dimA, m_dimA) - T; |
| normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); |
| if (normIminusT < maxNormForPade) { |
| degree = getPadeDegree(normIminusT); |
| degree2 = getPadeDegree(normIminusT * RealScalar(0.5)); |
| if (degree - degree2 <= 1 || numberOfExtraSquareRoots) |
| break; |
| numberOfExtraSquareRoots++; |
| } |
| MatrixSquareRootTriangular<ComplexMatrix>(T).compute(sqrtT); |
| T = sqrtT; |
| numberOfSquareRoots++; |
| } |
| computePade(degree, IminusT); |
| |
| for (; numberOfSquareRoots; numberOfSquareRoots--) { |
| compute2x2(ldexp(m_pFrac, -numberOfSquareRoots)); |
| m_fT *= m_fT; |
| } |
| compute2x2(m_pFrac); |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| inline int MatrixPower<MatrixType,PlainObject>::getPadeDegree(float normIminusT) |
| { |
| const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; |
| int degree = 3; |
| for (; degree <= 4; degree++) |
| if (normIminusT <= maxNormForPade[degree - 3]) |
| break; |
| return degree; |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| inline int MatrixPower<MatrixType,PlainObject>::getPadeDegree(double normIminusT) |
| { |
| const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, |
| 1.239917516308172e-1, 1.999045567181744e-1, 2.789358995219730e-1 }; |
| int degree = 3; |
| for (; degree <= 7; degree++) |
| if (normIminusT <= maxNormForPade[degree - 3]) |
| break; |
| return degree; |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| inline int MatrixPower<MatrixType,PlainObject>::getPadeDegree(long double normIminusT) |
| { |
| #if LDBL_MANT_DIG == 53 |
| const int maxPadeDegree = 7; |
| const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, |
| 1.239917516308172e-1L, 1.999045567181744e-1L, 2.789358995219730e-1L }; |
| |
| #elif LDBL_MANT_DIG <= 64 |
| const int maxPadeDegree = 8; |
| const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, |
| 6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; |
| |
| #elif LDBL_MANT_DIG <= 106 |
| const int maxPadeDegree = 10; |
| const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , |
| 1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, |
| 2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, |
| 1.1016843812851143391275867258512e-1L }; |
| #else |
| const int maxPadeDegree = 10; |
| const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , |
| 6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, |
| 9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, |
| 3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, |
| 9.134603732914548552537150753385375e-2L }; |
| #endif |
| int degree = 3; |
| for (; degree <= maxPadeDegree; degree++) |
| if (normIminusT <= maxNormForPade[degree - 3]) |
| break; |
| return degree; |
| } |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::computePade(const int& degree, const ComplexMatrix& IminusT) |
| { |
| int i = degree << 1; |
| m_fT = coeff(i) * IminusT; |
| for (i--; i; i--) { |
| m_fT = (ComplexMatrix::Identity(m_dimA, m_dimA) + m_fT).template triangularView<Upper>() |
| .solve(coeff(i) * IminusT).eval(); |
| } |
| m_fT += ComplexMatrix::Identity(m_dimA, m_dimA); |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| inline typename MatrixType::RealScalar MatrixPower<MatrixType,PlainObject>::coeff(const int& i) |
| { |
| if (i == 1) |
| return -m_pFrac; |
| else if (i & 1) |
| return (-m_pFrac - RealScalar(i >> 1)) / RealScalar(i << 1); |
| else |
| return (m_pFrac - RealScalar(i >> 1)) / RealScalar((i - 1) << 1); |
| } |
| |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::computeTmp(RealScalar) |
| { m_tmp = (m_U * m_fT * m_U.adjoint()).real(); } |
| |
| template<typename MatrixType, typename PlainObject> |
| void MatrixPower<MatrixType,PlainObject>::computeTmp(ComplexScalar) |
| { m_tmp = m_U * m_fT * m_U.adjoint(); } |
| |
| /** |
| * \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix power multiplied by other matrix. |
| * |
| * \tparam Derived type of the base, a matrix (expression). |
| * \tparam RhsDerived type of the multiplier. |
| * |
| * This class holds the arguments to the matrix power until it is |
| * assigned or evaluated for some other reason (so the argument |
| * should not be changed in the meantime). It is the return type of |
| * MatrixPowerReturnValue::operator*() and related functions and most |
| * of the time this is the only way it is used. |
| */ |
| template<typename Derived, typename RhsDerived> |
| class MatrixPowerProductReturnValue : public ReturnByValue<MatrixPowerProductReturnValue<Derived,RhsDerived> > |
| { |
| private: |
| typedef typename Derived::PlainObject MatrixType; |
| typedef typename RhsDerived::PlainObject PlainObject; |
| typedef typename RhsDerived::RealScalar RealScalar; |
| typedef typename RhsDerived::Index Index; |
| |
| public: |
| /** |
| * \brief Constructor. |
| * |
| * \param[in] A %Matrix (expression), the base of the matrix power. |
| * \param[in] p scalar, the exponent of the matrix power. |
| * \prarm[in] b %Matrix (expression), the multiplier. |
| */ |
| MatrixPowerProductReturnValue(const Derived& A, RealScalar p, const RhsDerived& b) |
| : m_A(A), m_p(p), m_b(b) { } |
| |
| /** |
| * \brief Compute the expression. |
| * |
| * \param[out] result \f$ A^p b \f$ where \p A, \p p and \p bare as |
| * in the constructor. |
| */ |
| template<typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| const MatrixType A = m_A; |
| const PlainObject b = m_b; |
| MatrixPower<MatrixType, PlainObject> mp(A, m_p, b); |
| mp.compute(result); |
| } |
| |
| Index rows() const { return m_b.rows(); } |
| Index cols() const { return m_b.cols(); } |
| |
| private: |
| const Derived& m_A; |
| const RealScalar m_p; |
| const RhsDerived& m_b; |
| MatrixPowerProductReturnValue& operator=(const MatrixPowerProductReturnValue&); |
| }; |
| |
| /** |
| * \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix power of some matrix (expression). |
| * |
| * \tparam Derived type of the base, a matrix (expression). |
| * |
| * This class holds the arguments to the matrix power until it is |
| * assigned or evaluated for some other reason (so the argument |
| * should not be changed in the meantime). It is the return type of |
| * MatrixBase::pow() and related functions and most of the |
| * time this is the only way it is used. |
| */ |
| template<typename Derived> |
| class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Derived> > |
| { |
| private: |
| typedef typename Derived::RealScalar RealScalar; |
| typedef typename Derived::Index Index; |
| |
| public: |
| /** |
| * \brief Constructor. |
| * |
| * \param[in] A %Matrix (expression), the base of the matrix power. |
| * \param[in] p scalar, the exponent of the matrix power. |
| */ |
| MatrixPowerReturnValue(const Derived& A, RealScalar p) |
| : m_A(A), m_p(p) { } |
| |
| /** |
| * \brief Return the matrix power multiplied by %Matrix \p b. |
| * |
| * The %MatrixPower class can optimize \f$ A^p b \f$ computing, and |
| * this method provides an elegant way to call it. |
| * |
| * Unlike general matrix-matrix / matrix-vector product, this does |
| * \b NOT produce a temporary storage for the result. Therefore, |
| * the code below is \a already optimal: |
| * \code |
| * v = A.pow(p) * b; |
| * // v.noalias() = A.pow(p) * b; Won't compile! |
| * \endcode |
| * |
| * \param[in] b %Matrix (expression), the multiplier. |
| */ |
| template<typename RhsDerived> |
| const MatrixPowerProductReturnValue<Derived,RhsDerived> operator*(const MatrixBase<RhsDerived>& b) const |
| { return MatrixPowerProductReturnValue<Derived,RhsDerived>(m_A, m_p, b.derived()); } |
| |
| /** |
| * \brief Compute the matrix power. |
| * |
| * \param[out] result \f$ A^p \f$ where \p A and \p p are as in the |
| * constructor. |
| */ |
| template<typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| typedef typename Derived::PlainObject PlainObject; |
| const PlainObject A = m_A; |
| const PlainObject Identity = PlainObject::Identity(m_A.rows(), m_A.cols()); |
| MatrixPower<PlainObject> mp(A, m_p, Identity); |
| mp.compute(result); |
| } |
| |
| Index rows() const { return m_A.rows(); } |
| Index cols() const { return m_A.cols(); } |
| |
| private: |
| const Derived& m_A; |
| const RealScalar m_p; |
| MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&); |
| }; |
| |
| namespace internal { |
| template<typename Derived> |
| struct traits<MatrixPowerReturnValue<Derived> > |
| { |
| typedef typename Derived::PlainObject ReturnType; |
| }; |
| |
| template<typename Derived, typename RhsDerived> |
| struct traits<MatrixPowerProductReturnValue<Derived,RhsDerived> > |
| { |
| typedef typename RhsDerived::PlainObject ReturnType; |
| }; |
| } |
| |
| template<typename Derived> |
| const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const |
| { |
| eigen_assert(rows() == cols()); |
| return MatrixPowerReturnValue<Derived>(derived(), p); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIX_POWER |