| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/Core> |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::MatrixXf; |
| using Eigen::Tensor; |
| |
| static void test_simple() |
| { |
| MatrixXf m1(3,3); |
| MatrixXf m2(3,3); |
| m1.setRandom(); |
| m2.setRandom(); |
| |
| TensorMap<Tensor<float, 2>> mat1(m1.data(), 3,3); |
| TensorMap<Tensor<float, 2>> mat2(m2.data(), 3,3); |
| |
| Tensor<float, 2> mat3(3,3); |
| mat3 = mat1; |
| |
| typedef Tensor<float, 1>::DimensionPair DimPair; |
| Eigen::array<DimPair, 1> dims({{DimPair(1, 0)}}); |
| |
| mat3 = mat3.contract(mat2, dims).eval(); |
| |
| VERIFY_IS_APPROX(mat3(0, 0), (m1*m2).eval()(0,0)); |
| VERIFY_IS_APPROX(mat3(0, 1), (m1*m2).eval()(0,1)); |
| VERIFY_IS_APPROX(mat3(0, 2), (m1*m2).eval()(0,2)); |
| VERIFY_IS_APPROX(mat3(1, 0), (m1*m2).eval()(1,0)); |
| VERIFY_IS_APPROX(mat3(1, 1), (m1*m2).eval()(1,1)); |
| VERIFY_IS_APPROX(mat3(1, 2), (m1*m2).eval()(1,2)); |
| VERIFY_IS_APPROX(mat3(2, 0), (m1*m2).eval()(2,0)); |
| VERIFY_IS_APPROX(mat3(2, 1), (m1*m2).eval()(2,1)); |
| VERIFY_IS_APPROX(mat3(2, 2), (m1*m2).eval()(2,2)); |
| } |
| |
| |
| void test_cxx11_tensor_forced_eval() |
| { |
| CALL_SUBTEST(test_simple()); |
| } |