| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "common.h" |
| |
| int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| // std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; |
| typedef void (*functype)(int, int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar, Eigen::GemmParallelInfo<Scalar>*); |
| static functype func[12]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<12; ++k) |
| func[k] = 0; |
| func[NOTR | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,ColMajor,false,ColMajor>::run); |
| func[ADJ | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| func[NOTR | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,false,ColMajor>::run); |
| func[TR | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,false,ColMajor>::run); |
| func[ADJ | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,false,ColMajor>::run); |
| func[NOTR | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| func[TR | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,Conj, ColMajor>::run); |
| func[ADJ | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,Conj, ColMajor>::run); |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| int code = OP(*opa) | (OP(*opb) << 2); |
| if(code>=12 || func[code]==0 || (*m<0) || (*n<0) || (*k<0)) |
| { |
| int info = 1; |
| xerbla_("GEMM", &info, 4); |
| return 0; |
| } |
| |
| if(beta!=Scalar(1)) |
| if(beta==Scalar(0)) |
| matrix(c, *m, *n, *ldc).setZero(); |
| else |
| matrix(c, *m, *n, *ldc) *= beta; |
| |
| func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, 0); |
| return 0; |
| } |
| |
| int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) |
| { |
| // std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; |
| typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int); |
| static functype func[32]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<32; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0, false,ColMajor,ColMajor>::run); |
| func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0, false,RowMajor,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0, Conj, RowMajor,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0, false,ColMajor,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0, false,RowMajor,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0, Conj, RowMajor,ColMajor>::run); |
| |
| func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|0, false,ColMajor,ColMajor>::run); |
| func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0, false,RowMajor,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|0, Conj, RowMajor,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|0, false,ColMajor,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0, false,RowMajor,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|0, Conj, RowMajor,ColMajor>::run); |
| |
| |
| func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run); |
| func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| |
| func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run); |
| func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); |
| if(code>=32 || func[code]==0 || *m<0 || *n <0) |
| { |
| int info=1; |
| xerbla_("TRSM",&info,4); |
| return 0; |
| } |
| |
| if(SIDE(*side)==LEFT) |
| func[code](*m, *n, a, *lda, b, *ldb); |
| else |
| func[code](*n, *m, a, *lda, b, *ldb); |
| |
| if(alpha!=Scalar(1)) |
| matrix(b,*m,*n,*ldb) *= alpha; |
| |
| return 0; |
| } |
| |
| |
| // b = alpha*op(a)*b for side = 'L'or'l' |
| // b = alpha*b*op(a) for side = 'R'or'r' |
| int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) |
| { |
| // std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; |
| typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); |
| static functype func[32]; |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<32; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| |
| func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|0, false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| |
| func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| |
| func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| |
| func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); |
| if(code>=32 || func[code]==0 || *m<0 || *n <0) |
| { |
| int info=1; |
| xerbla_("TRMM",&info,4); |
| return 0; |
| } |
| |
| // FIXME find a way to avoid this copy |
| Matrix<Scalar,Dynamic,Dynamic> tmp = matrix(b,*m,*n,*ldb); |
| matrix(b,*m,*n,*ldb).setZero(); |
| |
| if(SIDE(*side)==LEFT) |
| func[code](*m, *n, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha); |
| else |
| func[code](*n, *m, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha); |
| return 1; |
| } |
| |
| // c = alpha*a*b + beta*c for side = 'L'or'l' |
| // c = alpha*b*a + beta*c for side = 'R'or'r |
| int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| // std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| if(*m<0 || *n<0) |
| { |
| int info=1; |
| xerbla_("SYMM",&info,4); |
| return 0; |
| } |
| |
| if(beta!=Scalar(1)) |
| if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); |
| else matrix(c, *m, *n, *ldc) *= beta; |
| |
| if(SIDE(*side)==LEFT) |
| if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| else return 0; |
| else if(SIDE(*side)==RIGHT) |
| if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| else return 0; |
| else |
| return 0; |
| |
| return 0; |
| } |
| |
| // c = alpha*a*a' + beta*c for op = 'N'or'n' |
| // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' |
| int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| // std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; |
| typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); |
| static functype func[8]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<8; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Upper>::run); |
| func[TR | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run); |
| func[ADJ | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run); |
| |
| func[NOTR | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Lower>::run); |
| func[TR | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run); |
| func[ADJ | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| int code = OP(*op) | (UPLO(*uplo) << 2); |
| if(code>=8 || func[code]==0 || *n<0 || *k<0) |
| { |
| int info=1; |
| xerbla_("SYRK",&info,4); |
| return 0; |
| } |
| |
| if(beta!=Scalar(1)) |
| if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; |
| else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; |
| |
| func[code](*n, *k, a, *lda, c, *ldc, alpha); |
| |
| return 0; |
| } |
| |
| // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' |
| // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' |
| int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| // TODO |
| std::cerr << "Eigen BLAS: _syr2k is not implemented yet\n"; |
| |
| return 0; |
| } |
| |
| |
| #if ISCOMPLEX |
| |
| // c = alpha*a*b + beta*c for side = 'L'or'l' |
| // c = alpha*b*a + beta*c for side = 'R'or'r |
| int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| // std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; |
| |
| if(*m<0 || *n<0) |
| { |
| return 0; |
| } |
| |
| if(beta!=Scalar(1)) |
| matrix(c, *m, *n, *ldc) *= beta; |
| |
| if(SIDE(*side)==LEFT) |
| if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, RowMajor,true,Conj, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| else return 0; |
| else if(SIDE(*side)==RIGHT) |
| if(UPLO(*uplo)==UP) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,Conj, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| else if(UPLO(*uplo)==LO) ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| else return 0; |
| else |
| { |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| // c = alpha*a*conj(a') + beta*c for op = 'N'or'n' |
| // c = alpha*conj(a')*a + beta*c for op = 'C'or'c' |
| int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar); |
| static functype func[8]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<8; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Upper>::run); |
| func[ADJ | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Upper>::run); |
| |
| func[NOTR | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, Lower>::run); |
| func[ADJ | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,Lower>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| RealScalar alpha = *palpha; |
| RealScalar beta = *pbeta; |
| |
| // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; |
| |
| if(*n<0 || *k<0) |
| { |
| return 0; |
| } |
| |
| int code = OP(*op) | (UPLO(*uplo) << 2); |
| if(code>=8 || func[code]==0) |
| return 0; |
| |
| if(beta!=RealScalar(1)) |
| { |
| if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; |
| else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; |
| |
| matrix(c, *n, *n, *ldc).diagonal().real() *= beta; |
| matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| } |
| |
| if(*k>0 && alpha!=RealScalar(0)) |
| { |
| func[code](*n, *k, a, *lda, c, *ldc, alpha); |
| matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| } |
| return 0; |
| } |
| |
| // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' |
| // c = alpha*conj(b')*a + conj(alpha)*conj(a')*b + beta*c, for op = 'C'or'c' |
| int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| if(*n<0 || *k<0) |
| { |
| return 0; |
| } |
| |
| // TODO |
| std::cerr << "Eigen BLAS: _her2k is not implemented yet\n"; |
| |
| return 0; |
| } |
| |
| #endif // ISCOMPLEX |