|  | 
 | // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp  -o benchEigenSolver && ./benchEigenSolver | 
 | // options: | 
 | //  -DBENCH_GMM | 
 | //  -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3 | 
 | //  -DEIGEN_DONT_VECTORIZE | 
 | //  -msse2 | 
 | //  -DREPEAT=100 | 
 | //  -DTRIES=10 | 
 | //  -DSCALAR=double | 
 |  | 
 | #include <Eigen/Array> | 
 | #include <Eigen/QR> | 
 | #include <bench/BenchUtil.h> | 
 | using namespace Eigen; | 
 |  | 
 | #ifndef REPEAT | 
 | #define REPEAT 1000 | 
 | #endif | 
 |  | 
 | #ifndef TRIES | 
 | #define TRIES 4 | 
 | #endif | 
 |  | 
 | #ifndef SCALAR | 
 | #define SCALAR float | 
 | #endif | 
 |  | 
 | typedef SCALAR Scalar; | 
 |  | 
 | template <typename MatrixType> | 
 | __attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m) | 
 | { | 
 |   int rows = m.rows(); | 
 |   int cols = m.cols(); | 
 |  | 
 |   int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows)))); | 
 |   int saRepeats = stdRepeats * 4; | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows,cols); | 
 |   SquareMatrixType covMat =  a * a.adjoint(); | 
 |  | 
 |   BenchTimer timerSa, timerStd; | 
 |  | 
 |   Scalar acc = 0; | 
 |   int r = ei_random<int>(0,covMat.rows()-1); | 
 |   int c = ei_random<int>(0,covMat.cols()-1); | 
 |   { | 
 |     SelfAdjointEigenSolver<SquareMatrixType> ei(covMat); | 
 |     for (int t=0; t<TRIES; ++t) | 
 |     { | 
 |       timerSa.start(); | 
 |       for (int k=0; k<saRepeats; ++k) | 
 |       { | 
 |         ei.compute(covMat); | 
 |         acc += ei.eigenvectors().coeff(r,c); | 
 |       } | 
 |       timerSa.stop(); | 
 |     } | 
 |   } | 
 |  | 
 |   { | 
 |     EigenSolver<SquareMatrixType> ei(covMat); | 
 |     for (int t=0; t<TRIES; ++t) | 
 |     { | 
 |       timerStd.start(); | 
 |       for (int k=0; k<stdRepeats; ++k) | 
 |       { | 
 |         ei.compute(covMat); | 
 |         acc += ei.eigenvectors().coeff(r,c); | 
 |       } | 
 |       timerStd.stop(); | 
 |     } | 
 |   } | 
 |  | 
 |   if (MatrixType::RowsAtCompileTime==Dynamic) | 
 |     std::cout << "dyn   "; | 
 |   else | 
 |     std::cout << "fixed "; | 
 |   std::cout << covMat.rows() << " \t" | 
 |             << timerSa.value() * REPEAT / saRepeats << "s \t" | 
 |             << timerStd.value() * REPEAT / stdRepeats << "s"; | 
 |  | 
 |   #ifdef BENCH_GMM | 
 |   if (MatrixType::RowsAtCompileTime==Dynamic) | 
 |   { | 
 |     timerSa.reset(); | 
 |     timerStd.reset(); | 
 |  | 
 |     gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols()); | 
 |     gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols()); | 
 |     std::vector<Scalar> eigval(covMat.rows()); | 
 |     eiToGmm(covMat, gmmCovMat); | 
 |     for (int t=0; t<TRIES; ++t) | 
 |     { | 
 |       timerSa.start(); | 
 |       for (int k=0; k<saRepeats; ++k) | 
 |       { | 
 |         gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect); | 
 |         acc += eigvect(r,c); | 
 |       } | 
 |       timerSa.stop(); | 
 |     } | 
 |     // the non-selfadjoint solver does not compute the eigen vectors | 
 | //     for (int t=0; t<TRIES; ++t) | 
 | //     { | 
 | //       timerStd.start(); | 
 | //       for (int k=0; k<stdRepeats; ++k) | 
 | //       { | 
 | //         gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect); | 
 | //         acc += eigvect(r,c); | 
 | //       } | 
 | //       timerStd.stop(); | 
 | //     } | 
 |  | 
 |     std::cout << " | \t" | 
 |               << timerSa.value() * REPEAT / saRepeats << "s" | 
 |               << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ "   na   "; | 
 |   } | 
 |   #endif | 
 |  | 
 |   #ifdef BENCH_GSL | 
 |   if (MatrixType::RowsAtCompileTime==Dynamic) | 
 |   { | 
 |     timerSa.reset(); | 
 |     timerStd.reset(); | 
 |  | 
 |     gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols()); | 
 |     gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols()); | 
 |     gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols()); | 
 |     gsl_vector* eigval  = gsl_vector_alloc(covMat.rows()); | 
 |     gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows()); | 
 |      | 
 |     gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols()); | 
 |     gsl_vector_complex* eigvalz  = gsl_vector_complex_alloc(covMat.rows()); | 
 |     gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows()); | 
 |      | 
 |     eiToGsl(covMat, &gslCovMat); | 
 |     for (int t=0; t<TRIES; ++t) | 
 |     { | 
 |       timerSa.start(); | 
 |       for (int k=0; k<saRepeats; ++k) | 
 |       { | 
 |         gsl_matrix_memcpy(gslCopy,gslCovMat); | 
 |         gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm); | 
 |         acc += gsl_matrix_get(eigvect,r,c); | 
 |       } | 
 |       timerSa.stop(); | 
 |     } | 
 |     for (int t=0; t<TRIES; ++t) | 
 |     { | 
 |       timerStd.start(); | 
 |       for (int k=0; k<stdRepeats; ++k) | 
 |       { | 
 |         gsl_matrix_memcpy(gslCopy,gslCovMat); | 
 |         gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm); | 
 |         acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c)); | 
 |       } | 
 |       timerStd.stop(); | 
 |     } | 
 |  | 
 |     std::cout << " | \t" | 
 |               << timerSa.value() * REPEAT / saRepeats << "s \t" | 
 |               << timerStd.value() * REPEAT / stdRepeats << "s"; | 
 |  | 
 |     gsl_matrix_free(gslCovMat); | 
 |     gsl_vector_free(gslCopy); | 
 |     gsl_matrix_free(eigvect); | 
 |     gsl_vector_free(eigval); | 
 |     gsl_matrix_complex_free(eigvectz); | 
 |     gsl_vector_complex_free(eigvalz); | 
 |     gsl_eigen_symmv_free(eisymm); | 
 |     gsl_eigen_nonsymmv_free(einonsymm); | 
 |   } | 
 |   #endif | 
 |  | 
 |   std::cout << "\n"; | 
 |    | 
 |   // make sure the compiler does not optimize too much | 
 |   if (acc==123) | 
 |     std::cout << acc; | 
 | } | 
 |  | 
 | int main(int argc, char* argv[]) | 
 | { | 
 |   const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0}; | 
 |   std::cout << "size            selfadjoint       generic"; | 
 |   #ifdef BENCH_GMM | 
 |   std::cout << "        GMM++          "; | 
 |   #endif | 
 |   #ifdef BENCH_GSL | 
 |   std::cout << "       GSL (double + ATLAS)  "; | 
 |   #endif | 
 |   std::cout << "\n"; | 
 |   for (uint i=0; dynsizes[i]>0; ++i) | 
 |     benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i])); | 
 |  | 
 |   benchEigenSolver(Matrix<Scalar,2,2>()); | 
 |   benchEigenSolver(Matrix<Scalar,3,3>()); | 
 |   benchEigenSolver(Matrix<Scalar,4,4>()); | 
 |   benchEigenSolver(Matrix<Scalar,6,6>()); | 
 |   benchEigenSolver(Matrix<Scalar,8,8>()); | 
 |   benchEigenSolver(Matrix<Scalar,12,12>()); | 
 |   benchEigenSolver(Matrix<Scalar,16,16>()); | 
 |   return 0; | 
 | } | 
 |  |