|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_GSL_HELPER | 
|  | #define EIGEN_GSL_HELPER | 
|  |  | 
|  | #include <Eigen/Core> | 
|  |  | 
|  | #include <gsl/gsl_blas.h> | 
|  | #include <gsl/gsl_multifit.h> | 
|  | #include <gsl/gsl_eigen.h> | 
|  | #include <gsl/gsl_linalg.h> | 
|  | #include <gsl/gsl_complex.h> | 
|  | #include <gsl/gsl_complex_math.h> | 
|  | #include <gsl/gsl_poly.h> | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct GslTraits | 
|  | { | 
|  | typedef gsl_matrix* Matrix; | 
|  | typedef gsl_vector* Vector; | 
|  | static Matrix createMatrix(int rows, int cols) { return gsl_matrix_alloc(rows,cols); } | 
|  | static Vector createVector(int size) { return gsl_vector_alloc(size); } | 
|  | static void free(Matrix& m) { gsl_matrix_free(m); m=0; } | 
|  | static void free(Vector& m) { gsl_vector_free(m); m=0; } | 
|  | static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_dgemv(CblasNoTrans,1,m,v,0,x); } | 
|  | static void cholesky(Matrix& m) { gsl_linalg_cholesky_decomp(m); } | 
|  | static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_cholesky_solve(m,b,x); } | 
|  | static void eigen_symm(const Matrix& m, Vector& eval, Matrix& evec) | 
|  | { | 
|  | gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc(m->size1); | 
|  | Matrix a = createMatrix(m->size1, m->size2); | 
|  | gsl_matrix_memcpy(a, m); | 
|  | gsl_eigen_symmv(a,eval,evec,w); | 
|  | gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); | 
|  | gsl_eigen_symmv_free(w); | 
|  | free(a); | 
|  | } | 
|  | static void eigen_symm_gen(const Matrix& m, const Matrix& _b, Vector& eval, Matrix& evec) | 
|  | { | 
|  | gsl_eigen_gensymmv_workspace * w = gsl_eigen_gensymmv_alloc(m->size1); | 
|  | Matrix a = createMatrix(m->size1, m->size2); | 
|  | Matrix b = createMatrix(_b->size1, _b->size2); | 
|  | gsl_matrix_memcpy(a, m); | 
|  | gsl_matrix_memcpy(b, _b); | 
|  | gsl_eigen_gensymmv(a,b,eval,evec,w); | 
|  | gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); | 
|  | gsl_eigen_gensymmv_free(w); | 
|  | free(a); | 
|  | } | 
|  |  | 
|  | template<class EIGEN_VECTOR, class EIGEN_ROOTS> | 
|  | static void eigen_poly_solve(const EIGEN_VECTOR& poly, EIGEN_ROOTS& roots ) | 
|  | { | 
|  | const int deg = poly.size()-1; | 
|  | double *z = new double[2*deg]; | 
|  | double *a = new double[poly.size()]; | 
|  | for( int i=0; i<poly.size(); ++i ){ a[i] = poly[i]; } | 
|  |  | 
|  | gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (poly.size()); | 
|  | gsl_poly_complex_solve(a, poly.size(), w, z); | 
|  | gsl_poly_complex_workspace_free (w); | 
|  | for( int i=0; i<deg; ++i ) | 
|  | { | 
|  | roots[i].real() = z[2*i]; | 
|  | roots[i].imag() = z[2*i+1]; | 
|  | } | 
|  |  | 
|  | delete[] a; | 
|  | delete[] z; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct GslTraits<Scalar,true> | 
|  | { | 
|  | typedef gsl_matrix_complex* Matrix; | 
|  | typedef gsl_vector_complex* Vector; | 
|  | static Matrix createMatrix(int rows, int cols) { return gsl_matrix_complex_alloc(rows,cols); } | 
|  | static Vector createVector(int size) { return gsl_vector_complex_alloc(size); } | 
|  | static void free(Matrix& m) { gsl_matrix_complex_free(m); m=0; } | 
|  | static void free(Vector& m) { gsl_vector_complex_free(m); m=0; } | 
|  | static void cholesky(Matrix& m) { gsl_linalg_complex_cholesky_decomp(m); } | 
|  | static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_complex_cholesky_solve(m,b,x); } | 
|  | static void prod(const Matrix& m, const Vector& v, Vector& x) | 
|  | { gsl_blas_zgemv(CblasNoTrans,gsl_complex_rect(1,0),m,v,gsl_complex_rect(0,0),x); } | 
|  | static void eigen_symm(const Matrix& m, gsl_vector* &eval, Matrix& evec) | 
|  | { | 
|  | gsl_eigen_hermv_workspace * w = gsl_eigen_hermv_alloc(m->size1); | 
|  | Matrix a = createMatrix(m->size1, m->size2); | 
|  | gsl_matrix_complex_memcpy(a, m); | 
|  | gsl_eigen_hermv(a,eval,evec,w); | 
|  | gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); | 
|  | gsl_eigen_hermv_free(w); | 
|  | free(a); | 
|  | } | 
|  | static void eigen_symm_gen(const Matrix& m, const Matrix& _b, gsl_vector* &eval, Matrix& evec) | 
|  | { | 
|  | gsl_eigen_genhermv_workspace * w = gsl_eigen_genhermv_alloc(m->size1); | 
|  | Matrix a = createMatrix(m->size1, m->size2); | 
|  | Matrix b = createMatrix(_b->size1, _b->size2); | 
|  | gsl_matrix_complex_memcpy(a, m); | 
|  | gsl_matrix_complex_memcpy(b, _b); | 
|  | gsl_eigen_genhermv(a,b,eval,evec,w); | 
|  | gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC); | 
|  | gsl_eigen_genhermv_free(w); | 
|  | free(a); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void convert(const MatrixType& m, gsl_matrix* &res) | 
|  | { | 
|  | //   if (res) | 
|  | //     gsl_matrix_free(res); | 
|  | res = gsl_matrix_alloc(m.rows(), m.cols()); | 
|  | for (int i=0 ; i<m.rows() ; ++i) | 
|  | for (int j=0 ; j<m.cols(); ++j) | 
|  | gsl_matrix_set(res, i, j, m(i,j)); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void convert(const gsl_matrix* m, MatrixType& res) | 
|  | { | 
|  | res.resize(int(m->size1), int(m->size2)); | 
|  | for (int i=0 ; i<res.rows() ; ++i) | 
|  | for (int j=0 ; j<res.cols(); ++j) | 
|  | res(i,j) = gsl_matrix_get(m,i,j); | 
|  | } | 
|  |  | 
|  | template<typename VectorType> | 
|  | void convert(const VectorType& m, gsl_vector* &res) | 
|  | { | 
|  | if (res) gsl_vector_free(res); | 
|  | res = gsl_vector_alloc(m.size()); | 
|  | for (int i=0 ; i<m.size() ; ++i) | 
|  | gsl_vector_set(res, i, m[i]); | 
|  | } | 
|  |  | 
|  | template<typename VectorType> | 
|  | void convert(const gsl_vector* m, VectorType& res) | 
|  | { | 
|  | res.resize (m->size); | 
|  | for (int i=0 ; i<res.rows() ; ++i) | 
|  | res[i] = gsl_vector_get(m, i); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void convert(const MatrixType& m, gsl_matrix_complex* &res) | 
|  | { | 
|  | res = gsl_matrix_complex_alloc(m.rows(), m.cols()); | 
|  | for (int i=0 ; i<m.rows() ; ++i) | 
|  | for (int j=0 ; j<m.cols(); ++j) | 
|  | { | 
|  | gsl_matrix_complex_set(res, i, j, | 
|  | gsl_complex_rect(m(i,j).real(), m(i,j).imag())); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void convert(const gsl_matrix_complex* m, MatrixType& res) | 
|  | { | 
|  | res.resize(int(m->size1), int(m->size2)); | 
|  | for (int i=0 ; i<res.rows() ; ++i) | 
|  | for (int j=0 ; j<res.cols(); ++j) | 
|  | res(i,j) = typename MatrixType::Scalar( | 
|  | GSL_REAL(gsl_matrix_complex_get(m,i,j)), | 
|  | GSL_IMAG(gsl_matrix_complex_get(m,i,j))); | 
|  | } | 
|  |  | 
|  | template<typename VectorType> | 
|  | void convert(const VectorType& m, gsl_vector_complex* &res) | 
|  | { | 
|  | res = gsl_vector_complex_alloc(m.size()); | 
|  | for (int i=0 ; i<m.size() ; ++i) | 
|  | gsl_vector_complex_set(res, i, gsl_complex_rect(m[i].real(), m[i].imag())); | 
|  | } | 
|  |  | 
|  | template<typename VectorType> | 
|  | void convert(const gsl_vector_complex* m, VectorType& res) | 
|  | { | 
|  | res.resize(m->size); | 
|  | for (int i=0 ; i<res.rows() ; ++i) | 
|  | res[i] = typename VectorType::Scalar( | 
|  | GSL_REAL(gsl_vector_complex_get(m, i)), | 
|  | GSL_IMAG(gsl_vector_complex_get(m, i))); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_GSL_HELPER |