|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void product_extra(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
|  | typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, | 
|  | MatrixType::Flags&RowMajorBit> OtherMajorMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | identity = MatrixType::Identity(rows, rows), | 
|  | square = MatrixType::Random(rows, rows), | 
|  | res = MatrixType::Random(rows, rows), | 
|  | square2 = MatrixType::Random(cols, cols), | 
|  | res2 = MatrixType::Random(cols, cols); | 
|  | RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); | 
|  | ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
|  | OtherMajorMatrixType tm1 = m1; | 
|  |  | 
|  | Scalar s1 = ei_random<Scalar>(), | 
|  | s2 = ei_random<Scalar>(), | 
|  | s3 = ei_random<Scalar>(); | 
|  |  | 
|  | //   int c0 = ei_random<int>(0,cols/2-1), | 
|  | //       c1 = ei_random<int>(cols/2,cols), | 
|  | //       r0 = ei_random<int>(0,rows/2-1), | 
|  | //       r1 = ei_random<int>(rows/2,rows); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval()); | 
|  |  | 
|  | // a very tricky case where a scale factor has to be automatically conjugated: | 
|  | VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); | 
|  |  | 
|  |  | 
|  | // test all possible conjugate combinations for the four matrix-vector product cases: | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), | 
|  | (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); | 
|  | VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), | 
|  | (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), | 
|  | (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), | 
|  | (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), | 
|  | (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), | 
|  | (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), | 
|  | (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), | 
|  | (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), | 
|  | (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), | 
|  | (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  |  | 
|  | // test the vector-matrix product with non aligned starts | 
|  | Index i = ei_random<Index>(0,m1.rows()-2); | 
|  | Index j = ei_random<Index>(0,m1.cols()-2); | 
|  | Index r = ei_random<Index>(1,m1.rows()-i); | 
|  | Index c = ei_random<Index>(1,m1.cols()-j); | 
|  | Index i2 = ei_random<Index>(0,m1.rows()-1); | 
|  | Index j2 = ei_random<Index>(0,m1.cols()-1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); | 
|  | VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); | 
|  | } | 
|  |  | 
|  | void test_product_extra() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( product_extra(MatrixXf(ei_random<int>(2,320), ei_random<int>(2,320))) ); | 
|  | CALL_SUBTEST_2( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) ); | 
|  | CALL_SUBTEST_3( product_extra(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(ei_random<int>(2,50), ei_random<int>(2,50))) ); | 
|  | } | 
|  | } |