|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_FUZZY_H | 
|  | #define EIGEN_FUZZY_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal | 
|  | { | 
|  |  | 
|  | template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> | 
|  | struct isApprox_selector | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) | 
|  | { | 
|  | typename internal::nested_eval<Derived,2>::type nested(x); | 
|  | typename internal::nested_eval<OtherDerived,2>::type otherNested(y); | 
|  | return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived, typename OtherDerived> | 
|  | struct isApprox_selector<Derived, OtherDerived, true> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&) | 
|  | { | 
|  | return x.matrix() == y.matrix(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> | 
|  | struct isMuchSmallerThan_object_selector | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) | 
|  | { | 
|  | return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived, typename OtherDerived> | 
|  | struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&) | 
|  | { | 
|  | return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger> | 
|  | struct isMuchSmallerThan_scalar_selector | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec) | 
|  | { | 
|  | return x.cwiseAbs2().sum() <= numext::abs2(prec * y); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct isMuchSmallerThan_scalar_selector<Derived, true> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&) | 
|  | { | 
|  | return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ | 
|  | * are considered to be approximately equal within precision \f$ p \f$ if | 
|  | * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] | 
|  | * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm | 
|  | * L2 norm). | 
|  | * | 
|  | * \note Because of the multiplicativeness of this comparison, one can't use this function | 
|  | * to check whether \c *this is approximately equal to the zero matrix or vector. | 
|  | * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix | 
|  | * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const | 
|  | * RealScalar&, RealScalar) instead. | 
|  | * | 
|  | * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherDerived> | 
|  | bool DenseBase<Derived>::isApprox( | 
|  | const DenseBase<OtherDerived>& other, | 
|  | const RealScalar& prec | 
|  | ) const | 
|  | { | 
|  | return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec); | 
|  | } | 
|  |  | 
|  | /** \returns \c true if the norm of \c *this is much smaller than \a other, | 
|  | * within the precision determined by \a prec. | 
|  | * | 
|  | * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is | 
|  | * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if | 
|  | * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] | 
|  | * | 
|  | * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, | 
|  | * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm | 
|  | * of a reference matrix of same dimensions. | 
|  | * | 
|  | * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const | 
|  | */ | 
|  | template<typename Derived> | 
|  | bool DenseBase<Derived>::isMuchSmallerThan( | 
|  | const typename NumTraits<Scalar>::Real& other, | 
|  | const RealScalar& prec | 
|  | ) const | 
|  | { | 
|  | return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec); | 
|  | } | 
|  |  | 
|  | /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, | 
|  | * within the precision determined by \a prec. | 
|  | * | 
|  | * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is | 
|  | * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if | 
|  | * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] | 
|  | * For matrices, the comparison is done using the Hilbert-Schmidt norm. | 
|  | * | 
|  | * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherDerived> | 
|  | bool DenseBase<Derived>::isMuchSmallerThan( | 
|  | const DenseBase<OtherDerived>& other, | 
|  | const RealScalar& prec | 
|  | ) const | 
|  | { | 
|  | return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_FUZZY_H |