| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H | 
 | #define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal Low-level conjugate gradient algorithm for least-square problems | 
 |   * \param mat The matrix A | 
 |   * \param rhs The right hand side vector b | 
 |   * \param x On input and initial solution, on output the computed solution. | 
 |   * \param precond A preconditioner being able to efficiently solve for an | 
 |   *                approximation of A'Ax=b (regardless of b) | 
 |   * \param iters On input the max number of iteration, on output the number of performed iterations. | 
 |   * \param tol_error On input the tolerance error, on output an estimation of the relative error. | 
 |   */ | 
 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | 
 | EIGEN_DONT_INLINE | 
 | void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, | 
 |                                      const Preconditioner& precond, Index& iters, | 
 |                                      typename Dest::RealScalar& tol_error) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |   typedef typename Dest::RealScalar RealScalar; | 
 |   typedef typename Dest::Scalar Scalar; | 
 |   typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |    | 
 |   RealScalar tol = tol_error; | 
 |   Index maxIters = iters; | 
 |    | 
 |   Index m = mat.rows(), n = mat.cols(); | 
 |  | 
 |   VectorType residual        = rhs - mat * x; | 
 |   VectorType normal_residual = mat.adjoint() * residual; | 
 |  | 
 |   RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); | 
 |   if(rhsNorm2 == 0)  | 
 |   { | 
 |     x.setZero(); | 
 |     iters = 0; | 
 |     tol_error = 0; | 
 |     return; | 
 |   } | 
 |   RealScalar threshold = tol*tol*rhsNorm2; | 
 |   RealScalar residualNorm2 = normal_residual.squaredNorm(); | 
 |   if (residualNorm2 < threshold) | 
 |   { | 
 |     iters = 0; | 
 |     tol_error = sqrt(residualNorm2 / rhsNorm2); | 
 |     return; | 
 |   } | 
 |    | 
 |   VectorType p(n); | 
 |   p = precond.solve(normal_residual);                         // initial search direction | 
 |  | 
 |   VectorType z(n), tmp(m); | 
 |   RealScalar absNew = numext::real(normal_residual.dot(p));  // the square of the absolute value of r scaled by invM | 
 |   Index i = 0; | 
 |   while(i < maxIters) | 
 |   { | 
 |     tmp.noalias() = mat * p; | 
 |  | 
 |     Scalar alpha = absNew / tmp.squaredNorm();      // the amount we travel on dir | 
 |     x += alpha * p;                                 // update solution | 
 |     residual -= alpha * tmp;                        // update residual | 
 |     normal_residual = mat.adjoint() * residual;     // update residual of the normal equation | 
 |      | 
 |     residualNorm2 = normal_residual.squaredNorm(); | 
 |     if(residualNorm2 < threshold) | 
 |       break; | 
 |      | 
 |     z = precond.solve(normal_residual);             // approximately solve for "A'A z = normal_residual" | 
 |  | 
 |     RealScalar absOld = absNew; | 
 |     absNew = numext::real(normal_residual.dot(z));  // update the absolute value of r | 
 |     RealScalar beta = absNew / absOld;              // calculate the Gram-Schmidt value used to create the new search direction | 
 |     p = z + beta * p;                               // update search direction | 
 |     i++; | 
 |   } | 
 |   tol_error = sqrt(residualNorm2 / rhsNorm2); | 
 |   iters = i; | 
 | } | 
 |  | 
 | } | 
 |  | 
 | template< typename _MatrixType, | 
 |           typename _Preconditioner = LeastSquareDiagonalPreconditioner<typename _MatrixType::Scalar> > | 
 | class LeastSquaresConjugateGradient; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template< typename _MatrixType, typename _Preconditioner> | 
 | struct traits<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > | 
 | { | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef _Preconditioner Preconditioner; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * \brief A conjugate gradient solver for sparse (or dense) least-square problems | 
 |   * | 
 |   * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. | 
 |   * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. | 
 |   * Otherwise, the SparseLU or SparseQR classes might be preferable. | 
 |   * The matrix A and the vectors x and b can be either dense or sparse. | 
 |   * | 
 |   * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. | 
 |   * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner | 
 |   * | 
 |   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | 
 |   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | 
 |   * and NumTraits<Scalar>::epsilon() for the tolerance. | 
 |   *  | 
 |   * This class can be used as the direct solver classes. Here is a typical usage example: | 
 |     \code | 
 |     int m=1000000, n = 10000; | 
 |     VectorXd x(n), b(m); | 
 |     SparseMatrix<double> A(m,n); | 
 |     // fill A and b | 
 |     LeastSquaresConjugateGradient<SparseMatrix<double> > lscg; | 
 |     lscg.compute(A); | 
 |     x = lscg.solve(b); | 
 |     std::cout << "#iterations:     " << lscg.iterations() << std::endl; | 
 |     std::cout << "estimated error: " << lscg.error()      << std::endl; | 
 |     // update b, and solve again | 
 |     x = lscg.solve(b); | 
 |     \endcode | 
 |   *  | 
 |   * By default the iterations start with x=0 as an initial guess of the solution. | 
 |   * One can control the start using the solveWithGuess() method. | 
 |   *  | 
 |   * \sa class ConjugateGradient, SparseLU, SparseQR | 
 |   */ | 
 | template< typename _MatrixType, typename _Preconditioner> | 
 | class LeastSquaresConjugateGradient : public IterativeSolverBase<LeastSquaresConjugateGradient<_MatrixType,_Preconditioner> > | 
 | { | 
 |   typedef IterativeSolverBase<LeastSquaresConjugateGradient> Base; | 
 |   using Base::mp_matrix; | 
 |   using Base::m_error; | 
 |   using Base::m_iterations; | 
 |   using Base::m_info; | 
 |   using Base::m_isInitialized; | 
 | public: | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef _Preconditioner Preconditioner; | 
 |  | 
 | public: | 
 |  | 
 |   /** Default constructor. */ | 
 |   LeastSquaresConjugateGradient() : Base() {} | 
 |  | 
 |   /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
 |     *  | 
 |     * This constructor is a shortcut for the default constructor followed | 
 |     * by a call to compute(). | 
 |     *  | 
 |     * \warning this class stores a reference to the matrix A as well as some | 
 |     * precomputed values that depend on it. Therefore, if \a A is changed | 
 |     * this class becomes invalid. Call compute() to update it with the new | 
 |     * matrix A, or modify a copy of A. | 
 |     */ | 
 |   explicit LeastSquaresConjugateGradient(const MatrixType& A) : Base(A) {} | 
 |  | 
 |   ~LeastSquaresConjugateGradient() {} | 
 |  | 
 |   /** \internal */ | 
 |   template<typename Rhs,typename Dest> | 
 |   void _solve_with_guess_impl(const Rhs& b, Dest& x) const | 
 |   { | 
 |     m_iterations = Base::maxIterations(); | 
 |     m_error = Base::m_tolerance; | 
 |  | 
 |     for(Index j=0; j<b.cols(); ++j) | 
 |     { | 
 |       m_iterations = Base::maxIterations(); | 
 |       m_error = Base::m_tolerance; | 
 |  | 
 |       typename Dest::ColXpr xj(x,j); | 
 |       internal::least_square_conjugate_gradient(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error); | 
 |     } | 
 |  | 
 |     m_isInitialized = true; | 
 |     m_info = m_error <= Base::m_tolerance ? Success : NoConvergence; | 
 |   } | 
 |    | 
 |   /** \internal */ | 
 |   using Base::_solve_impl; | 
 |   template<typename Rhs,typename Dest> | 
 |   void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const | 
 |   { | 
 |     x.setZero(); | 
 |     _solve_with_guess_impl(b.derived(),x); | 
 |   } | 
 |  | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H |