|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  |  | 
|  | /* | 
|  |  | 
|  | NOTE: this routine has been adapted from the CSparse library: | 
|  |  | 
|  | Copyright (c) 2006, Timothy A. Davis. | 
|  | http://www.cise.ufl.edu/research/sparse/CSparse | 
|  |  | 
|  | CSparse is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | CSparse is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with this Module; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  |  | 
|  | */ | 
|  |  | 
|  | #include "../Core/util/NonMPL2.h" | 
|  |  | 
|  | #ifndef EIGEN_SPARSE_AMD_H | 
|  | #define EIGEN_SPARSE_AMD_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename T> inline T amd_flip(const T& i) { return -i-2; } | 
|  | template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; } | 
|  | template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; } | 
|  | template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); } | 
|  |  | 
|  | /* clear w */ | 
|  | template<typename StorageIndex> | 
|  | static StorageIndex cs_wclear (StorageIndex mark, StorageIndex lemax, StorageIndex *w, StorageIndex n) | 
|  | { | 
|  | StorageIndex k; | 
|  | if(mark < 2 || (mark + lemax < 0)) | 
|  | { | 
|  | for(k = 0; k < n; k++) | 
|  | if(w[k] != 0) | 
|  | w[k] = 1; | 
|  | mark = 2; | 
|  | } | 
|  | return (mark);     /* at this point, w[0..n-1] < mark holds */ | 
|  | } | 
|  |  | 
|  | /* depth-first search and postorder of a tree rooted at node j */ | 
|  | template<typename StorageIndex> | 
|  | StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const StorageIndex *next, StorageIndex *post, StorageIndex *stack) | 
|  | { | 
|  | StorageIndex i, p, top = 0; | 
|  | if(!head || !next || !post || !stack) return (-1);    /* check inputs */ | 
|  | stack[0] = j;                 /* place j on the stack */ | 
|  | while (top >= 0)                /* while (stack is not empty) */ | 
|  | { | 
|  | p = stack[top];           /* p = top of stack */ | 
|  | i = head[p];              /* i = youngest child of p */ | 
|  | if(i == -1) | 
|  | { | 
|  | top--;                 /* p has no unordered children left */ | 
|  | post[k++] = p;        /* node p is the kth postordered node */ | 
|  | } | 
|  | else | 
|  | { | 
|  | head[p] = next[i];   /* remove i from children of p */ | 
|  | stack[++top] = i;     /* start dfs on child node i */ | 
|  | } | 
|  | } | 
|  | return k; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** \internal | 
|  | * \ingroup OrderingMethods_Module | 
|  | * Approximate minimum degree ordering algorithm. | 
|  | * \returns the permutation P reducing the fill-in of the input matrix \a C | 
|  | * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional. | 
|  | * On exit the values of C are destroyed */ | 
|  | template<typename Scalar, typename StorageIndex> | 
|  | void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,StorageIndex>& C, PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) | 
|  | { | 
|  | using std::sqrt; | 
|  |  | 
|  | StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, | 
|  | k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, | 
|  | ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h; | 
|  |  | 
|  | StorageIndex n = StorageIndex(C.cols()); | 
|  | dense = std::max<StorageIndex> (16, StorageIndex(10 * sqrt(double(n))));   /* find dense threshold */ | 
|  | dense = (std::min)(n-2, dense); | 
|  |  | 
|  | StorageIndex cnz = StorageIndex(C.nonZeros()); | 
|  | perm.resize(n+1); | 
|  | t = cnz + cnz/5 + 2*n;                 /* add elbow room to C */ | 
|  | C.resizeNonZeros(t); | 
|  |  | 
|  | // get workspace | 
|  | ei_declare_aligned_stack_constructed_variable(StorageIndex,W,8*(n+1),0); | 
|  | StorageIndex* len     = W; | 
|  | StorageIndex* nv      = W +   (n+1); | 
|  | StorageIndex* next    = W + 2*(n+1); | 
|  | StorageIndex* head    = W + 3*(n+1); | 
|  | StorageIndex* elen    = W + 4*(n+1); | 
|  | StorageIndex* degree  = W + 5*(n+1); | 
|  | StorageIndex* w       = W + 6*(n+1); | 
|  | StorageIndex* hhead   = W + 7*(n+1); | 
|  | StorageIndex* last    = perm.indices().data();                              /* use P as workspace for last */ | 
|  |  | 
|  | /* --- Initialize quotient graph ---------------------------------------- */ | 
|  | StorageIndex* Cp = C.outerIndexPtr(); | 
|  | StorageIndex* Ci = C.innerIndexPtr(); | 
|  | for(k = 0; k < n; k++) | 
|  | len[k] = Cp[k+1] - Cp[k]; | 
|  | len[n] = 0; | 
|  | nzmax = t; | 
|  |  | 
|  | for(i = 0; i <= n; i++) | 
|  | { | 
|  | head[i]   = -1;                     // degree list i is empty | 
|  | last[i]   = -1; | 
|  | next[i]   = -1; | 
|  | hhead[i]  = -1;                     // hash list i is empty | 
|  | nv[i]     = 1;                      // node i is just one node | 
|  | w[i]      = 1;                      // node i is alive | 
|  | elen[i]   = 0;                      // Ek of node i is empty | 
|  | degree[i] = len[i];                 // degree of node i | 
|  | } | 
|  | mark = internal::cs_wclear<StorageIndex>(0, 0, w, n);         /* clear w */ | 
|  |  | 
|  | /* --- Initialize degree lists ------------------------------------------ */ | 
|  | for(i = 0; i < n; i++) | 
|  | { | 
|  | bool has_diag = false; | 
|  | for(p = Cp[i]; p<Cp[i+1]; ++p) | 
|  | if(Ci[p]==i) | 
|  | { | 
|  | has_diag = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | d = degree[i]; | 
|  | if(d == 1)                      /* node i is empty */ | 
|  | { | 
|  | elen[i] = -2;                 /* element i is dead */ | 
|  | nel++; | 
|  | Cp[i] = -1;                   /* i is a root of assembly tree */ | 
|  | w[i] = 0; | 
|  | } | 
|  | else if(d > dense || !has_diag)  /* node i is dense or has no structural diagonal element */ | 
|  | { | 
|  | nv[i] = 0;                    /* absorb i into element n */ | 
|  | elen[i] = -1;                 /* node i is dead */ | 
|  | nel++; | 
|  | Cp[i] = amd_flip (n); | 
|  | nv[n]++; | 
|  | } | 
|  | else | 
|  | { | 
|  | if(head[d] != -1) last[head[d]] = i; | 
|  | next[i] = head[d];           /* put node i in degree list d */ | 
|  | head[d] = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | elen[n] = -2;                         /* n is a dead element */ | 
|  | Cp[n] = -1;                           /* n is a root of assembly tree */ | 
|  | w[n] = 0;                             /* n is a dead element */ | 
|  |  | 
|  | while (nel < n)                         /* while (selecting pivots) do */ | 
|  | { | 
|  | /* --- Select node of minimum approximate degree -------------------- */ | 
|  | for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {} | 
|  | if(next[k] != -1) last[next[k]] = -1; | 
|  | head[mindeg] = next[k];          /* remove k from degree list */ | 
|  | elenk = elen[k];                  /* elenk = |Ek| */ | 
|  | nvk = nv[k];                      /* # of nodes k represents */ | 
|  | nel += nvk;                        /* nv[k] nodes of A eliminated */ | 
|  |  | 
|  | /* --- Garbage collection ------------------------------------------- */ | 
|  | if(elenk > 0 && cnz + mindeg >= nzmax) | 
|  | { | 
|  | for(j = 0; j < n; j++) | 
|  | { | 
|  | if((p = Cp[j]) >= 0)      /* j is a live node or element */ | 
|  | { | 
|  | Cp[j] = Ci[p];          /* save first entry of object */ | 
|  | Ci[p] = amd_flip (j);    /* first entry is now amd_flip(j) */ | 
|  | } | 
|  | } | 
|  | for(q = 0, p = 0; p < cnz; ) /* scan all of memory */ | 
|  | { | 
|  | if((j = amd_flip (Ci[p++])) >= 0)  /* found object j */ | 
|  | { | 
|  | Ci[q] = Cp[j];       /* restore first entry of object */ | 
|  | Cp[j] = q++;          /* new pointer to object j */ | 
|  | for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++]; | 
|  | } | 
|  | } | 
|  | cnz = q;                       /* Ci[cnz...nzmax-1] now free */ | 
|  | } | 
|  |  | 
|  | /* --- Construct new element ---------------------------------------- */ | 
|  | dk = 0; | 
|  | nv[k] = -nvk;                     /* flag k as in Lk */ | 
|  | p = Cp[k]; | 
|  | pk1 = (elenk == 0) ? p : cnz;      /* do in place if elen[k] == 0 */ | 
|  | pk2 = pk1; | 
|  | for(k1 = 1; k1 <= elenk + 1; k1++) | 
|  | { | 
|  | if(k1 > elenk) | 
|  | { | 
|  | e = k;                     /* search the nodes in k */ | 
|  | pj = p;                    /* list of nodes starts at Ci[pj]*/ | 
|  | ln = len[k] - elenk;      /* length of list of nodes in k */ | 
|  | } | 
|  | else | 
|  | { | 
|  | e = Ci[p++];              /* search the nodes in e */ | 
|  | pj = Cp[e]; | 
|  | ln = len[e];              /* length of list of nodes in e */ | 
|  | } | 
|  | for(k2 = 1; k2 <= ln; k2++) | 
|  | { | 
|  | i = Ci[pj++]; | 
|  | if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ | 
|  | dk += nvi;                 /* degree[Lk] += size of node i */ | 
|  | nv[i] = -nvi;             /* negate nv[i] to denote i in Lk*/ | 
|  | Ci[pk2++] = i;            /* place i in Lk */ | 
|  | if(next[i] != -1) last[next[i]] = last[i]; | 
|  | if(last[i] != -1)         /* remove i from degree list */ | 
|  | { | 
|  | next[last[i]] = next[i]; | 
|  | } | 
|  | else | 
|  | { | 
|  | head[degree[i]] = next[i]; | 
|  | } | 
|  | } | 
|  | if(e != k) | 
|  | { | 
|  | Cp[e] = amd_flip (k);      /* absorb e into k */ | 
|  | w[e] = 0;                 /* e is now a dead element */ | 
|  | } | 
|  | } | 
|  | if(elenk != 0) cnz = pk2;         /* Ci[cnz...nzmax] is free */ | 
|  | degree[k] = dk;                   /* external degree of k - |Lk\i| */ | 
|  | Cp[k] = pk1;                      /* element k is in Ci[pk1..pk2-1] */ | 
|  | len[k] = pk2 - pk1; | 
|  | elen[k] = -2;                     /* k is now an element */ | 
|  |  | 
|  | /* --- Find set differences ----------------------------------------- */ | 
|  | mark = internal::cs_wclear<StorageIndex>(mark, lemax, w, n);  /* clear w if necessary */ | 
|  | for(pk = pk1; pk < pk2; pk++)    /* scan 1: find |Le\Lk| */ | 
|  | { | 
|  | i = Ci[pk]; | 
|  | if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */ | 
|  | nvi = -nv[i];                      /* nv[i] was negated */ | 
|  | wnvi = mark - nvi; | 
|  | for(p = Cp[i]; p <= Cp[i] + eln - 1; p++)  /* scan Ei */ | 
|  | { | 
|  | e = Ci[p]; | 
|  | if(w[e] >= mark) | 
|  | { | 
|  | w[e] -= nvi;          /* decrement |Le\Lk| */ | 
|  | } | 
|  | else if(w[e] != 0)        /* ensure e is a live element */ | 
|  | { | 
|  | w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* --- Degree update ------------------------------------------------ */ | 
|  | for(pk = pk1; pk < pk2; pk++)    /* scan2: degree update */ | 
|  | { | 
|  | i = Ci[pk];                   /* consider node i in Lk */ | 
|  | p1 = Cp[i]; | 
|  | p2 = p1 + elen[i] - 1; | 
|  | pn = p1; | 
|  | for(h = 0, d = 0, p = p1; p <= p2; p++)    /* scan Ei */ | 
|  | { | 
|  | e = Ci[p]; | 
|  | if(w[e] != 0)             /* e is an unabsorbed element */ | 
|  | { | 
|  | dext = w[e] - mark;   /* dext = |Le\Lk| */ | 
|  | if(dext > 0) | 
|  | { | 
|  | d += dext;         /* sum up the set differences */ | 
|  | Ci[pn++] = e;     /* keep e in Ei */ | 
|  | h += e;            /* compute the hash of node i */ | 
|  | } | 
|  | else | 
|  | { | 
|  | Cp[e] = amd_flip (k);  /* aggressive absorb. e->k */ | 
|  | w[e] = 0;             /* e is a dead element */ | 
|  | } | 
|  | } | 
|  | } | 
|  | elen[i] = pn - p1 + 1;        /* elen[i] = |Ei| */ | 
|  | p3 = pn; | 
|  | p4 = p1 + len[i]; | 
|  | for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */ | 
|  | { | 
|  | j = Ci[p]; | 
|  | if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ | 
|  | d += nvj;                  /* degree(i) += |j| */ | 
|  | Ci[pn++] = j;             /* place j in node list of i */ | 
|  | h += j;                    /* compute hash for node i */ | 
|  | } | 
|  | if(d == 0)                     /* check for mass elimination */ | 
|  | { | 
|  | Cp[i] = amd_flip (k);      /* absorb i into k */ | 
|  | nvi = -nv[i]; | 
|  | dk -= nvi;                 /* |Lk| -= |i| */ | 
|  | nvk += nvi;                /* |k| += nv[i] */ | 
|  | nel += nvi; | 
|  | nv[i] = 0; | 
|  | elen[i] = -1;             /* node i is dead */ | 
|  | } | 
|  | else | 
|  | { | 
|  | degree[i] = std::min<StorageIndex> (degree[i], d);   /* update degree(i) */ | 
|  | Ci[pn] = Ci[p3];         /* move first node to end */ | 
|  | Ci[p3] = Ci[p1];         /* move 1st el. to end of Ei */ | 
|  | Ci[p1] = k;               /* add k as 1st element in of Ei */ | 
|  | len[i] = pn - p1 + 1;     /* new len of adj. list of node i */ | 
|  | h %= n;                    /* finalize hash of i */ | 
|  | next[i] = hhead[h];      /* place i in hash bucket */ | 
|  | hhead[h] = i; | 
|  | last[i] = h;      /* save hash of i in last[i] */ | 
|  | } | 
|  | }                                   /* scan2 is done */ | 
|  | degree[k] = dk;                   /* finalize |Lk| */ | 
|  | lemax = std::max<StorageIndex>(lemax, dk); | 
|  | mark = internal::cs_wclear<StorageIndex>(mark+lemax, lemax, w, n);    /* clear w */ | 
|  |  | 
|  | /* --- Supernode detection ------------------------------------------ */ | 
|  | for(pk = pk1; pk < pk2; pk++) | 
|  | { | 
|  | i = Ci[pk]; | 
|  | if(nv[i] >= 0) continue;         /* skip if i is dead */ | 
|  | h = last[i];                      /* scan hash bucket of node i */ | 
|  | i = hhead[h]; | 
|  | hhead[h] = -1;                    /* hash bucket will be empty */ | 
|  | for(; i != -1 && next[i] != -1; i = next[i], mark++) | 
|  | { | 
|  | ln = len[i]; | 
|  | eln = elen[i]; | 
|  | for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark; | 
|  | jlast = i; | 
|  | for(j = next[i]; j != -1; ) /* compare i with all j */ | 
|  | { | 
|  | ok = (len[j] == ln) && (elen[j] == eln); | 
|  | for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) | 
|  | { | 
|  | if(w[Ci[p]] != mark) ok = 0;    /* compare i and j*/ | 
|  | } | 
|  | if(ok)                     /* i and j are identical */ | 
|  | { | 
|  | Cp[j] = amd_flip (i);  /* absorb j into i */ | 
|  | nv[i] += nv[j]; | 
|  | nv[j] = 0; | 
|  | elen[j] = -1;         /* node j is dead */ | 
|  | j = next[j];          /* delete j from hash bucket */ | 
|  | next[jlast] = j; | 
|  | } | 
|  | else | 
|  | { | 
|  | jlast = j;             /* j and i are different */ | 
|  | j = next[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* --- Finalize new element------------------------------------------ */ | 
|  | for(p = pk1, pk = pk1; pk < pk2; pk++)   /* finalize Lk */ | 
|  | { | 
|  | i = Ci[pk]; | 
|  | if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */ | 
|  | nv[i] = nvi;                      /* restore nv[i] */ | 
|  | d = degree[i] + dk - nvi;         /* compute external degree(i) */ | 
|  | d = std::min<StorageIndex> (d, n - nel - nvi); | 
|  | if(head[d] != -1) last[head[d]] = i; | 
|  | next[i] = head[d];               /* put i back in degree list */ | 
|  | last[i] = -1; | 
|  | head[d] = i; | 
|  | mindeg = std::min<StorageIndex> (mindeg, d);       /* find new minimum degree */ | 
|  | degree[i] = d; | 
|  | Ci[p++] = i;                      /* place i in Lk */ | 
|  | } | 
|  | nv[k] = nvk;                      /* # nodes absorbed into k */ | 
|  | if((len[k] = p-pk1) == 0)         /* length of adj list of element k*/ | 
|  | { | 
|  | Cp[k] = -1;                   /* k is a root of the tree */ | 
|  | w[k] = 0;                     /* k is now a dead element */ | 
|  | } | 
|  | if(elenk != 0) cnz = p;           /* free unused space in Lk */ | 
|  | } | 
|  |  | 
|  | /* --- Postordering ----------------------------------------------------- */ | 
|  | for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */ | 
|  | for(j = 0; j <= n; j++) head[j] = -1; | 
|  | for(j = n; j >= 0; j--)              /* place unordered nodes in lists */ | 
|  | { | 
|  | if(nv[j] > 0) continue;          /* skip if j is an element */ | 
|  | next[j] = head[Cp[j]];          /* place j in list of its parent */ | 
|  | head[Cp[j]] = j; | 
|  | } | 
|  | for(e = n; e >= 0; e--)              /* place elements in lists */ | 
|  | { | 
|  | if(nv[e] <= 0) continue;         /* skip unless e is an element */ | 
|  | if(Cp[e] != -1) | 
|  | { | 
|  | next[e] = head[Cp[e]];      /* place e in list of its parent */ | 
|  | head[Cp[e]] = e; | 
|  | } | 
|  | } | 
|  | for(k = 0, i = 0; i <= n; i++)       /* postorder the assembly tree */ | 
|  | { | 
|  | if(Cp[i] == -1) k = internal::cs_tdfs<StorageIndex>(i, k, head, next, perm.indices().data(), w); | 
|  | } | 
|  |  | 
|  | perm.indices().conservativeResize(n); | 
|  | } | 
|  |  | 
|  | } // namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SPARSE_AMD_H |