|  | // // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // This file is modified from the colamd/symamd library. The copyright is below | 
|  |  | 
|  | //   The authors of the code itself are Stefan I. Larimore and Timothy A. | 
|  | //   Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was | 
|  | //   developed in collaboration with John Gilbert, Xerox PARC, and Esmond | 
|  | //   Ng, Oak Ridge National Laboratory. | 
|  | // | 
|  | //     Date: | 
|  | // | 
|  | //   September 8, 2003.  Version 2.3. | 
|  | // | 
|  | //     Acknowledgements: | 
|  | // | 
|  | //   This work was supported by the National Science Foundation, under | 
|  | //   grants DMS-9504974 and DMS-9803599. | 
|  | // | 
|  | //     Notice: | 
|  | // | 
|  | //   Copyright (c) 1998-2003 by the University of Florida. | 
|  | //   All Rights Reserved. | 
|  | // | 
|  | //   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
|  | //   EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
|  | // | 
|  | //   Permission is hereby granted to use, copy, modify, and/or distribute | 
|  | //   this program, provided that the Copyright, this License, and the | 
|  | //   Availability of the original version is retained on all copies and made | 
|  | //   accessible to the end-user of any code or package that includes COLAMD | 
|  | //   or any modified version of COLAMD. | 
|  | // | 
|  | //     Availability: | 
|  | // | 
|  | //   The colamd/symamd library is available at | 
|  | // | 
|  | //       http://www.cise.ufl.edu/research/sparse/colamd/ | 
|  |  | 
|  | //   This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h | 
|  | //   file.  It is required by the colamd.c, colamdmex.c, and symamdmex.c | 
|  | //   files, and by any C code that calls the routines whose prototypes are | 
|  | //   listed below, or that uses the colamd/symamd definitions listed below. | 
|  |  | 
|  | #ifndef EIGEN_COLAMD_H | 
|  | #define EIGEN_COLAMD_H | 
|  |  | 
|  | namespace internal { | 
|  | /* Ensure that debugging is turned off: */ | 
|  | #ifndef COLAMD_NDEBUG | 
|  | #define COLAMD_NDEBUG | 
|  | #endif /* NDEBUG */ | 
|  | /* ========================================================================== */ | 
|  | /* === Knob and statistics definitions ====================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* size of the knobs [ ] array.  Only knobs [0..1] are currently used. */ | 
|  | #define COLAMD_KNOBS 20 | 
|  |  | 
|  | /* number of output statistics.  Only stats [0..6] are currently used. */ | 
|  | #define COLAMD_STATS 20 | 
|  |  | 
|  | /* knobs [0] and stats [0]: dense row knob and output statistic. */ | 
|  | #define COLAMD_DENSE_ROW 0 | 
|  |  | 
|  | /* knobs [1] and stats [1]: dense column knob and output statistic. */ | 
|  | #define COLAMD_DENSE_COL 1 | 
|  |  | 
|  | /* stats [2]: memory defragmentation count output statistic */ | 
|  | #define COLAMD_DEFRAG_COUNT 2 | 
|  |  | 
|  | /* stats [3]: colamd status:  zero OK, > 0 warning or notice, < 0 error */ | 
|  | #define COLAMD_STATUS 3 | 
|  |  | 
|  | /* stats [4..6]: error info, or info on jumbled columns */ | 
|  | #define COLAMD_INFO1 4 | 
|  | #define COLAMD_INFO2 5 | 
|  | #define COLAMD_INFO3 6 | 
|  |  | 
|  | /* error codes returned in stats [3]: */ | 
|  | #define COLAMD_OK       (0) | 
|  | #define COLAMD_OK_BUT_JUMBLED     (1) | 
|  | #define COLAMD_ERROR_A_not_present    (-1) | 
|  | #define COLAMD_ERROR_p_not_present    (-2) | 
|  | #define COLAMD_ERROR_nrow_negative    (-3) | 
|  | #define COLAMD_ERROR_ncol_negative    (-4) | 
|  | #define COLAMD_ERROR_nnz_negative   (-5) | 
|  | #define COLAMD_ERROR_p0_nonzero     (-6) | 
|  | #define COLAMD_ERROR_A_too_small    (-7) | 
|  | #define COLAMD_ERROR_col_length_negative  (-8) | 
|  | #define COLAMD_ERROR_row_index_out_of_bounds  (-9) | 
|  | #define COLAMD_ERROR_out_of_memory    (-10) | 
|  | #define COLAMD_ERROR_internal_error   (-999) | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === Definitions ========================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | #define COLAMD_MAX(a,b) (((a) > (b)) ? (a) : (b)) | 
|  | #define COLAMD_MIN(a,b) (((a) < (b)) ? (a) : (b)) | 
|  |  | 
|  | #define ONES_COMPLEMENT(r) (-(r)-1) | 
|  |  | 
|  | /* -------------------------------------------------------------------------- */ | 
|  |  | 
|  | #define COLAMD_EMPTY (-1) | 
|  |  | 
|  | /* Row and column status */ | 
|  | #define ALIVE (0) | 
|  | #define DEAD  (-1) | 
|  |  | 
|  | /* Column status */ | 
|  | #define DEAD_PRINCIPAL    (-1) | 
|  | #define DEAD_NON_PRINCIPAL  (-2) | 
|  |  | 
|  | /* Macros for row and column status update and checking. */ | 
|  | #define ROW_IS_DEAD(r)      ROW_IS_MARKED_DEAD (Row[r].shared2.mark) | 
|  | #define ROW_IS_MARKED_DEAD(row_mark)  (row_mark < ALIVE) | 
|  | #define ROW_IS_ALIVE(r)     (Row [r].shared2.mark >= ALIVE) | 
|  | #define COL_IS_DEAD(c)      (Col [c].start < ALIVE) | 
|  | #define COL_IS_ALIVE(c)     (Col [c].start >= ALIVE) | 
|  | #define COL_IS_DEAD_PRINCIPAL(c)  (Col [c].start == DEAD_PRINCIPAL) | 
|  | #define KILL_ROW(r)     { Row [r].shared2.mark = DEAD ; } | 
|  | #define KILL_PRINCIPAL_COL(c)   { Col [c].start = DEAD_PRINCIPAL ; } | 
|  | #define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === Colamd reporting mechanism =========================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | // == Row and Column structures == | 
|  | template <typename IndexType> | 
|  | struct colamd_col | 
|  | { | 
|  | IndexType start ;   /* index for A of first row in this column, or DEAD */ | 
|  | /* if column is dead */ | 
|  | IndexType length ;  /* number of rows in this column */ | 
|  | union | 
|  | { | 
|  | IndexType thickness ; /* number of original columns represented by this */ | 
|  | /* col, if the column is alive */ | 
|  | IndexType parent ;  /* parent in parent tree super-column structure, if */ | 
|  | /* the column is dead */ | 
|  | } shared1 ; | 
|  | union | 
|  | { | 
|  | IndexType score ; /* the score used to maintain heap, if col is alive */ | 
|  | IndexType order ; /* pivot ordering of this column, if col is dead */ | 
|  | } shared2 ; | 
|  | union | 
|  | { | 
|  | IndexType headhash ;  /* head of a hash bucket, if col is at the head of */ | 
|  | /* a degree list */ | 
|  | IndexType hash ;  /* hash value, if col is not in a degree list */ | 
|  | IndexType prev ;  /* previous column in degree list, if col is in a */ | 
|  | /* degree list (but not at the head of a degree list) */ | 
|  | } shared3 ; | 
|  | union | 
|  | { | 
|  | IndexType degree_next ; /* next column, if col is in a degree list */ | 
|  | IndexType hash_next ;   /* next column, if col is in a hash list */ | 
|  | } shared4 ; | 
|  |  | 
|  | }; | 
|  |  | 
|  | template <typename IndexType> | 
|  | struct Colamd_Row | 
|  | { | 
|  | IndexType start ;   /* index for A of first col in this row */ | 
|  | IndexType length ;  /* number of principal columns in this row */ | 
|  | union | 
|  | { | 
|  | IndexType degree ;  /* number of principal & non-principal columns in row */ | 
|  | IndexType p ;   /* used as a row pointer in init_rows_cols () */ | 
|  | } shared1 ; | 
|  | union | 
|  | { | 
|  | IndexType mark ;  /* for computing set differences and marking dead rows*/ | 
|  | IndexType first_column ;/* first column in row (used in garbage collection) */ | 
|  | } shared2 ; | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === Colamd recommended memory size ======================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | The recommended length Alen of the array A passed to colamd is given by | 
|  | the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.  It returns -1 if any | 
|  | argument is negative.  2*nnz space is required for the row and column | 
|  | indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is | 
|  | required for the Col and Row arrays, respectively, which are internal to | 
|  | colamd.  An additional n_col space is the minimal amount of "elbow room", | 
|  | and nnz/5 more space is recommended for run time efficiency. | 
|  |  | 
|  | This macro is not needed when using symamd. | 
|  |  | 
|  | Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid | 
|  | gcc -pedantic warning messages. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | inline IndexType colamd_c(IndexType n_col) | 
|  | { return IndexType( ((n_col) + 1) * sizeof (colamd_col<IndexType>) / sizeof (IndexType) ) ; } | 
|  |  | 
|  | template <typename IndexType> | 
|  | inline IndexType  colamd_r(IndexType n_row) | 
|  | { return IndexType(((n_row) + 1) * sizeof (Colamd_Row<IndexType>) / sizeof (IndexType)); } | 
|  |  | 
|  | // Prototypes of non-user callable routines | 
|  | template <typename IndexType> | 
|  | static IndexType init_rows_cols (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> col [], IndexType A [], IndexType p [], IndexType stats[COLAMD_STATS] ); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static void init_scoring (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static void order_children (IndexType n_col, colamd_col<IndexType> Col [], IndexType p []); | 
|  |  | 
|  | template <typename IndexType> | 
|  | static void detect_super_cols (colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ; | 
|  |  | 
|  | template <typename IndexType> | 
|  | static IndexType garbage_collection (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType *pfree) ; | 
|  |  | 
|  | template <typename IndexType> | 
|  | static inline  IndexType clear_mark (IndexType n_row, Colamd_Row<IndexType> Row [] ) ; | 
|  |  | 
|  | /* === No debugging ========================================================= */ | 
|  |  | 
|  | #define COLAMD_DEBUG0(params) ; | 
|  | #define COLAMD_DEBUG1(params) ; | 
|  | #define COLAMD_DEBUG2(params) ; | 
|  | #define COLAMD_DEBUG3(params) ; | 
|  | #define COLAMD_DEBUG4(params) ; | 
|  |  | 
|  | #define COLAMD_ASSERT(expression) ((void) 0) | 
|  |  | 
|  |  | 
|  | /** | 
|  | * \brief Returns the recommended value of Alen | 
|  | * | 
|  | * Returns recommended value of Alen for use by colamd. | 
|  | * Returns -1 if any input argument is negative. | 
|  | * The use of this routine or macro is optional. | 
|  | * Note that the macro uses its arguments   more than once, | 
|  | * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED. | 
|  | * | 
|  | * \param nnz nonzeros in A | 
|  | * \param n_row number of rows in A | 
|  | * \param n_col number of columns in A | 
|  | * \return recommended value of Alen for use by colamd | 
|  | */ | 
|  | template <typename IndexType> | 
|  | inline IndexType colamd_recommended ( IndexType nnz, IndexType n_row, IndexType n_col) | 
|  | { | 
|  | if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) | 
|  | return (-1); | 
|  | else | 
|  | return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief set default parameters  The use of this routine is optional. | 
|  | * | 
|  | * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col) | 
|  | * entries are removed prior to ordering.  Columns with more than | 
|  | * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to | 
|  | * ordering, and placed last in the output column ordering. | 
|  | * | 
|  | * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1, | 
|  | * respectively, in colamd.h.  Default values of these two knobs | 
|  | * are both 0.5.  Currently, only knobs [0] and knobs [1] are | 
|  | * used, but future versions may use more knobs.  If so, they will | 
|  | * be properly set to their defaults by the future version of | 
|  | * colamd_set_defaults, so that the code that calls colamd will | 
|  | * not need to change, assuming that you either use | 
|  | * colamd_set_defaults, or pass a (double *) NULL pointer as the | 
|  | * knobs array to colamd or symamd. | 
|  | * | 
|  | * \param knobs parameter settings for colamd | 
|  | */ | 
|  |  | 
|  | static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS]) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | int i ; | 
|  |  | 
|  | if (!knobs) | 
|  | { | 
|  | return ;      /* no knobs to initialize */ | 
|  | } | 
|  | for (i = 0 ; i < COLAMD_KNOBS ; i++) | 
|  | { | 
|  | knobs [i] = 0 ; | 
|  | } | 
|  | knobs [COLAMD_DENSE_ROW] = 0.5 ;  /* ignore rows over 50% dense */ | 
|  | knobs [COLAMD_DENSE_COL] = 0.5 ;  /* ignore columns over 50% dense */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief  Computes a column ordering using the column approximate minimum degree ordering | 
|  | * | 
|  | * Computes a column ordering (Q) of A such that P(AQ)=LU or | 
|  | * (AQ)'AQ=LL' have less fill-in and require fewer floating point | 
|  | * operations than factorizing the unpermuted matrix A or A'A, | 
|  | * respectively. | 
|  | * | 
|  | * | 
|  | * \param n_row number of rows in A | 
|  | * \param n_col number of columns in A | 
|  | * \param Alen, size of the array A | 
|  | * \param A row indices of the matrix, of size ALen | 
|  | * \param p column pointers of A, of size n_col+1 | 
|  | * \param knobs parameter settings for colamd | 
|  | * \param stats colamd output statistics and error codes | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS]) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType i ;     /* loop index */ | 
|  | IndexType nnz ;     /* nonzeros in A */ | 
|  | IndexType Row_size ;    /* size of Row [], in integers */ | 
|  | IndexType Col_size ;    /* size of Col [], in integers */ | 
|  | IndexType need ;      /* minimum required length of A */ | 
|  | Colamd_Row<IndexType> *Row ;   /* pointer into A of Row [0..n_row] array */ | 
|  | colamd_col<IndexType> *Col ;   /* pointer into A of Col [0..n_col] array */ | 
|  | IndexType n_col2 ;    /* number of non-dense, non-empty columns */ | 
|  | IndexType n_row2 ;    /* number of non-dense, non-empty rows */ | 
|  | IndexType ngarbage ;    /* number of garbage collections performed */ | 
|  | IndexType max_deg ;   /* maximum row degree */ | 
|  | double default_knobs [COLAMD_KNOBS] ; /* default knobs array */ | 
|  |  | 
|  |  | 
|  | /* === Check the input arguments ======================================== */ | 
|  |  | 
|  | if (!stats) | 
|  | { | 
|  | COLAMD_DEBUG0 (("colamd: stats not present\n")) ; | 
|  | return (false) ; | 
|  | } | 
|  | for (i = 0 ; i < COLAMD_STATS ; i++) | 
|  | { | 
|  | stats [i] = 0 ; | 
|  | } | 
|  | stats [COLAMD_STATUS] = COLAMD_OK ; | 
|  | stats [COLAMD_INFO1] = -1 ; | 
|  | stats [COLAMD_INFO2] = -1 ; | 
|  |  | 
|  | if (!A)   /* A is not present */ | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; | 
|  | COLAMD_DEBUG0 (("colamd: A not present\n")) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | if (!p)   /* p is not present */ | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; | 
|  | COLAMD_DEBUG0 (("colamd: p not present\n")) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | if (n_row < 0)  /* n_row must be >= 0 */ | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ; | 
|  | stats [COLAMD_INFO1] = n_row ; | 
|  | COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | if (n_col < 0)  /* n_col must be >= 0 */ | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; | 
|  | stats [COLAMD_INFO1] = n_col ; | 
|  | COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | nnz = p [n_col] ; | 
|  | if (nnz < 0)  /* nnz must be >= 0 */ | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; | 
|  | stats [COLAMD_INFO1] = nnz ; | 
|  | COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | if (p [0] != 0) | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; | 
|  | stats [COLAMD_INFO1] = p [0] ; | 
|  | COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | /* === If no knobs, set default knobs =================================== */ | 
|  |  | 
|  | if (!knobs) | 
|  | { | 
|  | colamd_set_defaults (default_knobs) ; | 
|  | knobs = default_knobs ; | 
|  | } | 
|  |  | 
|  | /* === Allocate the Row and Col arrays from array A ===================== */ | 
|  |  | 
|  | Col_size = colamd_c (n_col) ; | 
|  | Row_size = colamd_r (n_row) ; | 
|  | need = 2*nnz + n_col + Col_size + Row_size ; | 
|  |  | 
|  | if (need > Alen) | 
|  | { | 
|  | /* not enough space in array A to perform the ordering */ | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ; | 
|  | stats [COLAMD_INFO1] = need ; | 
|  | stats [COLAMD_INFO2] = Alen ; | 
|  | COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | Alen -= Col_size + Row_size ; | 
|  | Col = (colamd_col<IndexType> *) &A [Alen] ; | 
|  | Row = (Colamd_Row<IndexType> *) &A [Alen + Col_size] ; | 
|  |  | 
|  | /* === Construct the row and column data structures ===================== */ | 
|  |  | 
|  | if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) | 
|  | { | 
|  | /* input matrix is invalid */ | 
|  | COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | /* === Initialize scores, kill dense rows/columns ======================= */ | 
|  |  | 
|  | Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs, | 
|  | &n_row2, &n_col2, &max_deg) ; | 
|  |  | 
|  | /* === Order the supercolumns =========================================== */ | 
|  |  | 
|  | ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p, | 
|  | n_col2, max_deg, 2*nnz) ; | 
|  |  | 
|  | /* === Order the non-principal columns ================================== */ | 
|  |  | 
|  | Eigen::internal::order_children (n_col, Col, p) ; | 
|  |  | 
|  | /* === Return statistics in stats ======================================= */ | 
|  |  | 
|  | stats [COLAMD_DENSE_ROW] = n_row - n_row2 ; | 
|  | stats [COLAMD_DENSE_COL] = n_col - n_col2 ; | 
|  | stats [COLAMD_DEFRAG_COUNT] = ngarbage ; | 
|  | COLAMD_DEBUG0 (("colamd: done.\n")) ; | 
|  | return (true) ; | 
|  | } | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === NON-USER-CALLABLE ROUTINES: ========================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* There are no user-callable routines beyond this point in the file */ | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === init_rows_cols ======================================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Takes the column form of the matrix in A and creates the row form of the | 
|  | matrix.  Also, row and column attributes are stored in the Col and Row | 
|  | structs.  If the columns are un-sorted or contain duplicate row indices, | 
|  | this routine will also sort and remove duplicate row indices from the | 
|  | column form of the matrix.  Returns false if the matrix is invalid, | 
|  | true otherwise.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static IndexType init_rows_cols  /* returns true if OK, or false otherwise */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,      /* number of rows of A */ | 
|  | IndexType n_col,      /* number of columns of A */ | 
|  | Colamd_Row<IndexType> Row [],    /* of size n_row+1 */ | 
|  | colamd_col<IndexType> Col [],    /* of size n_col+1 */ | 
|  | IndexType A [],     /* row indices of A, of size Alen */ | 
|  | IndexType p [],     /* pointers to columns in A, of size n_col+1 */ | 
|  | IndexType stats [COLAMD_STATS]  /* colamd statistics */ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType col ;     /* a column index */ | 
|  | IndexType row ;     /* a row index */ | 
|  | IndexType *cp ;     /* a column pointer */ | 
|  | IndexType *cp_end ;   /* a pointer to the end of a column */ | 
|  | IndexType *rp ;     /* a row pointer */ | 
|  | IndexType *rp_end ;   /* a pointer to the end of a row */ | 
|  | IndexType last_row ;    /* previous row */ | 
|  |  | 
|  | /* === Initialize columns, and check column pointers ==================== */ | 
|  |  | 
|  | for (col = 0 ; col < n_col ; col++) | 
|  | { | 
|  | Col [col].start = p [col] ; | 
|  | Col [col].length = p [col+1] - p [col] ; | 
|  |  | 
|  | if (Col [col].length < 0) | 
|  | { | 
|  | /* column pointers must be non-decreasing */ | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; | 
|  | stats [COLAMD_INFO1] = col ; | 
|  | stats [COLAMD_INFO2] = Col [col].length ; | 
|  | COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | Col [col].shared1.thickness = 1 ; | 
|  | Col [col].shared2.score = 0 ; | 
|  | Col [col].shared3.prev = COLAMD_EMPTY ; | 
|  | Col [col].shared4.degree_next = COLAMD_EMPTY ; | 
|  | } | 
|  |  | 
|  | /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ | 
|  |  | 
|  | /* === Scan columns, compute row degrees, and check row indices ========= */ | 
|  |  | 
|  | stats [COLAMD_INFO3] = 0 ;  /* number of duplicate or unsorted row indices*/ | 
|  |  | 
|  | for (row = 0 ; row < n_row ; row++) | 
|  | { | 
|  | Row [row].length = 0 ; | 
|  | Row [row].shared2.mark = -1 ; | 
|  | } | 
|  |  | 
|  | for (col = 0 ; col < n_col ; col++) | 
|  | { | 
|  | last_row = -1 ; | 
|  |  | 
|  | cp = &A [p [col]] ; | 
|  | cp_end = &A [p [col+1]] ; | 
|  |  | 
|  | while (cp < cp_end) | 
|  | { | 
|  | row = *cp++ ; | 
|  |  | 
|  | /* make sure row indices within range */ | 
|  | if (row < 0 || row >= n_row) | 
|  | { | 
|  | stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; | 
|  | stats [COLAMD_INFO1] = col ; | 
|  | stats [COLAMD_INFO2] = row ; | 
|  | stats [COLAMD_INFO3] = n_row ; | 
|  | COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; | 
|  | return (false) ; | 
|  | } | 
|  |  | 
|  | if (row <= last_row || Row [row].shared2.mark == col) | 
|  | { | 
|  | /* row index are unsorted or repeated (or both), thus col */ | 
|  | /* is jumbled.  This is a notice, not an error condition. */ | 
|  | stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; | 
|  | stats [COLAMD_INFO1] = col ; | 
|  | stats [COLAMD_INFO2] = row ; | 
|  | (stats [COLAMD_INFO3]) ++ ; | 
|  | COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); | 
|  | } | 
|  |  | 
|  | if (Row [row].shared2.mark != col) | 
|  | { | 
|  | Row [row].length++ ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* this is a repeated entry in the column, */ | 
|  | /* it will be removed */ | 
|  | Col [col].length-- ; | 
|  | } | 
|  |  | 
|  | /* mark the row as having been seen in this column */ | 
|  | Row [row].shared2.mark = col ; | 
|  |  | 
|  | last_row = row ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Compute row pointers ============================================= */ | 
|  |  | 
|  | /* row form of the matrix starts directly after the column */ | 
|  | /* form of matrix in A */ | 
|  | Row [0].start = p [n_col] ; | 
|  | Row [0].shared1.p = Row [0].start ; | 
|  | Row [0].shared2.mark = -1 ; | 
|  | for (row = 1 ; row < n_row ; row++) | 
|  | { | 
|  | Row [row].start = Row [row-1].start + Row [row-1].length ; | 
|  | Row [row].shared1.p = Row [row].start ; | 
|  | Row [row].shared2.mark = -1 ; | 
|  | } | 
|  |  | 
|  | /* === Create row form ================================================== */ | 
|  |  | 
|  | if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) | 
|  | { | 
|  | /* if cols jumbled, watch for repeated row indices */ | 
|  | for (col = 0 ; col < n_col ; col++) | 
|  | { | 
|  | cp = &A [p [col]] ; | 
|  | cp_end = &A [p [col+1]] ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | row = *cp++ ; | 
|  | if (Row [row].shared2.mark != col) | 
|  | { | 
|  | A [(Row [row].shared1.p)++] = col ; | 
|  | Row [row].shared2.mark = col ; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* if cols not jumbled, we don't need the mark (this is faster) */ | 
|  | for (col = 0 ; col < n_col ; col++) | 
|  | { | 
|  | cp = &A [p [col]] ; | 
|  | cp_end = &A [p [col+1]] ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | A [(Row [*cp++].shared1.p)++] = col ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Clear the row marks and set row degrees ========================== */ | 
|  |  | 
|  | for (row = 0 ; row < n_row ; row++) | 
|  | { | 
|  | Row [row].shared2.mark = 0 ; | 
|  | Row [row].shared1.degree = Row [row].length ; | 
|  | } | 
|  |  | 
|  | /* === See if we need to re-create columns ============================== */ | 
|  |  | 
|  | if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) | 
|  | { | 
|  | COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; | 
|  |  | 
|  |  | 
|  | /* === Compute col pointers ========================================= */ | 
|  |  | 
|  | /* col form of the matrix starts at A [0]. */ | 
|  | /* Note, we may have a gap between the col form and the row */ | 
|  | /* form if there were duplicate entries, if so, it will be */ | 
|  | /* removed upon the first garbage collection */ | 
|  | Col [0].start = 0 ; | 
|  | p [0] = Col [0].start ; | 
|  | for (col = 1 ; col < n_col ; col++) | 
|  | { | 
|  | /* note that the lengths here are for pruned columns, i.e. */ | 
|  | /* no duplicate row indices will exist for these columns */ | 
|  | Col [col].start = Col [col-1].start + Col [col-1].length ; | 
|  | p [col] = Col [col].start ; | 
|  | } | 
|  |  | 
|  | /* === Re-create col form =========================================== */ | 
|  |  | 
|  | for (row = 0 ; row < n_row ; row++) | 
|  | { | 
|  | rp = &A [Row [row].start] ; | 
|  | rp_end = rp + Row [row].length ; | 
|  | while (rp < rp_end) | 
|  | { | 
|  | A [(p [*rp++])++] = row ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Done.  Matrix is not (or no longer) jumbled ====================== */ | 
|  |  | 
|  | return (true) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === init_scoring ========================================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Kills dense or empty columns and rows, calculates an initial score for | 
|  | each column, and places all columns in the degree lists.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static void init_scoring | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,      /* number of rows of A */ | 
|  | IndexType n_col,      /* number of columns of A */ | 
|  | Colamd_Row<IndexType> Row [],    /* of size n_row+1 */ | 
|  | colamd_col<IndexType> Col [],    /* of size n_col+1 */ | 
|  | IndexType A [],     /* column form and row form of A */ | 
|  | IndexType head [],    /* of size n_col+1 */ | 
|  | double knobs [COLAMD_KNOBS],/* parameters */ | 
|  | IndexType *p_n_row2,    /* number of non-dense, non-empty rows */ | 
|  | IndexType *p_n_col2,    /* number of non-dense, non-empty columns */ | 
|  | IndexType *p_max_deg    /* maximum row degree */ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType c ;     /* a column index */ | 
|  | IndexType r, row ;    /* a row index */ | 
|  | IndexType *cp ;     /* a column pointer */ | 
|  | IndexType deg ;     /* degree of a row or column */ | 
|  | IndexType *cp_end ;   /* a pointer to the end of a column */ | 
|  | IndexType *new_cp ;   /* new column pointer */ | 
|  | IndexType col_length ;    /* length of pruned column */ | 
|  | IndexType score ;     /* current column score */ | 
|  | IndexType n_col2 ;    /* number of non-dense, non-empty columns */ | 
|  | IndexType n_row2 ;    /* number of non-dense, non-empty rows */ | 
|  | IndexType dense_row_count ; /* remove rows with more entries than this */ | 
|  | IndexType dense_col_count ; /* remove cols with more entries than this */ | 
|  | IndexType min_score ;   /* smallest column score */ | 
|  | IndexType max_deg ;   /* maximum row degree */ | 
|  | IndexType next_col ;    /* Used to add to degree list.*/ | 
|  |  | 
|  |  | 
|  | /* === Extract knobs ==================================================== */ | 
|  |  | 
|  | dense_row_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ; | 
|  | dense_col_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ; | 
|  | COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; | 
|  | max_deg = 0 ; | 
|  | n_col2 = n_col ; | 
|  | n_row2 = n_row ; | 
|  |  | 
|  | /* === Kill empty columns =============================================== */ | 
|  |  | 
|  | /* Put the empty columns at the end in their natural order, so that LU */ | 
|  | /* factorization can proceed as far as possible. */ | 
|  | for (c = n_col-1 ; c >= 0 ; c--) | 
|  | { | 
|  | deg = Col [c].length ; | 
|  | if (deg == 0) | 
|  | { | 
|  | /* this is a empty column, kill and order it last */ | 
|  | Col [c].shared2.order = --n_col2 ; | 
|  | KILL_PRINCIPAL_COL (c) ; | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; | 
|  |  | 
|  | /* === Kill dense columns =============================================== */ | 
|  |  | 
|  | /* Put the dense columns at the end, in their natural order */ | 
|  | for (c = n_col-1 ; c >= 0 ; c--) | 
|  | { | 
|  | /* skip any dead columns */ | 
|  | if (COL_IS_DEAD (c)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | deg = Col [c].length ; | 
|  | if (deg > dense_col_count) | 
|  | { | 
|  | /* this is a dense column, kill and order it last */ | 
|  | Col [c].shared2.order = --n_col2 ; | 
|  | /* decrement the row degrees */ | 
|  | cp = &A [Col [c].start] ; | 
|  | cp_end = cp + Col [c].length ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | Row [*cp++].shared1.degree-- ; | 
|  | } | 
|  | KILL_PRINCIPAL_COL (c) ; | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; | 
|  |  | 
|  | /* === Kill dense and empty rows ======================================== */ | 
|  |  | 
|  | for (r = 0 ; r < n_row ; r++) | 
|  | { | 
|  | deg = Row [r].shared1.degree ; | 
|  | COLAMD_ASSERT (deg >= 0 && deg <= n_col) ; | 
|  | if (deg > dense_row_count || deg == 0) | 
|  | { | 
|  | /* kill a dense or empty row */ | 
|  | KILL_ROW (r) ; | 
|  | --n_row2 ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* keep track of max degree of remaining rows */ | 
|  | max_deg = COLAMD_MAX (max_deg, deg) ; | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; | 
|  |  | 
|  | /* === Compute initial column scores ==================================== */ | 
|  |  | 
|  | /* At this point the row degrees are accurate.  They reflect the number */ | 
|  | /* of "live" (non-dense) columns in each row.  No empty rows exist. */ | 
|  | /* Some "live" columns may contain only dead rows, however.  These are */ | 
|  | /* pruned in the code below. */ | 
|  |  | 
|  | /* now find the initial matlab score for each column */ | 
|  | for (c = n_col-1 ; c >= 0 ; c--) | 
|  | { | 
|  | /* skip dead column */ | 
|  | if (COL_IS_DEAD (c)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | score = 0 ; | 
|  | cp = &A [Col [c].start] ; | 
|  | new_cp = cp ; | 
|  | cp_end = cp + Col [c].length ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | /* get a row */ | 
|  | row = *cp++ ; | 
|  | /* skip if dead */ | 
|  | if (ROW_IS_DEAD (row)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | /* compact the column */ | 
|  | *new_cp++ = row ; | 
|  | /* add row's external degree */ | 
|  | score += Row [row].shared1.degree - 1 ; | 
|  | /* guard against integer overflow */ | 
|  | score = COLAMD_MIN (score, n_col) ; | 
|  | } | 
|  | /* determine pruned column length */ | 
|  | col_length = (IndexType) (new_cp - &A [Col [c].start]) ; | 
|  | if (col_length == 0) | 
|  | { | 
|  | /* a newly-made null column (all rows in this col are "dense" */ | 
|  | /* and have already been killed) */ | 
|  | COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ; | 
|  | Col [c].shared2.order = --n_col2 ; | 
|  | KILL_PRINCIPAL_COL (c) ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* set column length and set score */ | 
|  | COLAMD_ASSERT (score >= 0) ; | 
|  | COLAMD_ASSERT (score <= n_col) ; | 
|  | Col [c].length = col_length ; | 
|  | Col [c].shared2.score = score ; | 
|  | } | 
|  | } | 
|  | COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", | 
|  | n_col-n_col2)) ; | 
|  |  | 
|  | /* At this point, all empty rows and columns are dead.  All live columns */ | 
|  | /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ | 
|  | /* yet).  Rows may contain dead columns, but all live rows contain at */ | 
|  | /* least one live column. */ | 
|  |  | 
|  | /* === Initialize degree lists ========================================== */ | 
|  |  | 
|  |  | 
|  | /* clear the hash buckets */ | 
|  | for (c = 0 ; c <= n_col ; c++) | 
|  | { | 
|  | head [c] = COLAMD_EMPTY ; | 
|  | } | 
|  | min_score = n_col ; | 
|  | /* place in reverse order, so low column indices are at the front */ | 
|  | /* of the lists.  This is to encourage natural tie-breaking */ | 
|  | for (c = n_col-1 ; c >= 0 ; c--) | 
|  | { | 
|  | /* only add principal columns to degree lists */ | 
|  | if (COL_IS_ALIVE (c)) | 
|  | { | 
|  | COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n", | 
|  | c, Col [c].shared2.score, min_score, n_col)) ; | 
|  |  | 
|  | /* === Add columns score to DList =============================== */ | 
|  |  | 
|  | score = Col [c].shared2.score ; | 
|  |  | 
|  | COLAMD_ASSERT (min_score >= 0) ; | 
|  | COLAMD_ASSERT (min_score <= n_col) ; | 
|  | COLAMD_ASSERT (score >= 0) ; | 
|  | COLAMD_ASSERT (score <= n_col) ; | 
|  | COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ; | 
|  |  | 
|  | /* now add this column to dList at proper score location */ | 
|  | next_col = head [score] ; | 
|  | Col [c].shared3.prev = COLAMD_EMPTY ; | 
|  | Col [c].shared4.degree_next = next_col ; | 
|  |  | 
|  | /* if there already was a column with the same score, set its */ | 
|  | /* previous pointer to this new column */ | 
|  | if (next_col != COLAMD_EMPTY) | 
|  | { | 
|  | Col [next_col].shared3.prev = c ; | 
|  | } | 
|  | head [score] = c ; | 
|  |  | 
|  | /* see if this score is less than current min */ | 
|  | min_score = COLAMD_MIN (min_score, score) ; | 
|  |  | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* === Return number of remaining columns, and max row degree =========== */ | 
|  |  | 
|  | *p_n_col2 = n_col2 ; | 
|  | *p_n_row2 = n_row2 ; | 
|  | *p_max_deg = max_deg ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === find_ordering ======================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Order the principal columns of the supercolumn form of the matrix | 
|  | (no supercolumns on input).  Uses a minimum approximate column minimum | 
|  | degree ordering method.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static IndexType find_ordering /* return the number of garbage collections */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,      /* number of rows of A */ | 
|  | IndexType n_col,      /* number of columns of A */ | 
|  | IndexType Alen,     /* size of A, 2*nnz + n_col or larger */ | 
|  | Colamd_Row<IndexType> Row [],    /* of size n_row+1 */ | 
|  | colamd_col<IndexType> Col [],    /* of size n_col+1 */ | 
|  | IndexType A [],     /* column form and row form of A */ | 
|  | IndexType head [],    /* of size n_col+1 */ | 
|  | IndexType n_col2,     /* Remaining columns to order */ | 
|  | IndexType max_deg,    /* Maximum row degree */ | 
|  | IndexType pfree     /* index of first free slot (2*nnz on entry) */ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType k ;     /* current pivot ordering step */ | 
|  | IndexType pivot_col ;   /* current pivot column */ | 
|  | IndexType *cp ;     /* a column pointer */ | 
|  | IndexType *rp ;     /* a row pointer */ | 
|  | IndexType pivot_row ;   /* current pivot row */ | 
|  | IndexType *new_cp ;   /* modified column pointer */ | 
|  | IndexType *new_rp ;   /* modified row pointer */ | 
|  | IndexType pivot_row_start ; /* pointer to start of pivot row */ | 
|  | IndexType pivot_row_degree ;  /* number of columns in pivot row */ | 
|  | IndexType pivot_row_length ;  /* number of supercolumns in pivot row */ | 
|  | IndexType pivot_col_score ; /* score of pivot column */ | 
|  | IndexType needed_memory ;   /* free space needed for pivot row */ | 
|  | IndexType *cp_end ;   /* pointer to the end of a column */ | 
|  | IndexType *rp_end ;   /* pointer to the end of a row */ | 
|  | IndexType row ;     /* a row index */ | 
|  | IndexType col ;     /* a column index */ | 
|  | IndexType max_score ;   /* maximum possible score */ | 
|  | IndexType cur_score ;   /* score of current column */ | 
|  | unsigned int hash ;   /* hash value for supernode detection */ | 
|  | IndexType head_column ;   /* head of hash bucket */ | 
|  | IndexType first_col ;   /* first column in hash bucket */ | 
|  | IndexType tag_mark ;    /* marker value for mark array */ | 
|  | IndexType row_mark ;    /* Row [row].shared2.mark */ | 
|  | IndexType set_difference ;  /* set difference size of row with pivot row */ | 
|  | IndexType min_score ;   /* smallest column score */ | 
|  | IndexType col_thickness ;   /* "thickness" (no. of columns in a supercol) */ | 
|  | IndexType max_mark ;    /* maximum value of tag_mark */ | 
|  | IndexType pivot_col_thickness ; /* number of columns represented by pivot col */ | 
|  | IndexType prev_col ;    /* Used by Dlist operations. */ | 
|  | IndexType next_col ;    /* Used by Dlist operations. */ | 
|  | IndexType ngarbage ;    /* number of garbage collections performed */ | 
|  |  | 
|  |  | 
|  | /* === Initialization and clear mark ==================================== */ | 
|  |  | 
|  | max_mark = INT_MAX - n_col ;  /* INT_MAX defined in <limits.h> */ | 
|  | tag_mark = Eigen::internal::clear_mark (n_row, Row) ; | 
|  | min_score = 0 ; | 
|  | ngarbage = 0 ; | 
|  | COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; | 
|  |  | 
|  | /* === Order the columns ================================================ */ | 
|  |  | 
|  | for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) | 
|  | { | 
|  |  | 
|  | /* === Select pivot column, and order it ============================ */ | 
|  |  | 
|  | /* make sure degree list isn't empty */ | 
|  | COLAMD_ASSERT (min_score >= 0) ; | 
|  | COLAMD_ASSERT (min_score <= n_col) ; | 
|  | COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ; | 
|  |  | 
|  | /* get pivot column from head of minimum degree list */ | 
|  | while (head [min_score] == COLAMD_EMPTY && min_score < n_col) | 
|  | { | 
|  | min_score++ ; | 
|  | } | 
|  | pivot_col = head [min_score] ; | 
|  | COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; | 
|  | next_col = Col [pivot_col].shared4.degree_next ; | 
|  | head [min_score] = next_col ; | 
|  | if (next_col != COLAMD_EMPTY) | 
|  | { | 
|  | Col [next_col].shared3.prev = COLAMD_EMPTY ; | 
|  | } | 
|  |  | 
|  | COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ; | 
|  | COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ; | 
|  |  | 
|  | /* remember score for defrag check */ | 
|  | pivot_col_score = Col [pivot_col].shared2.score ; | 
|  |  | 
|  | /* the pivot column is the kth column in the pivot order */ | 
|  | Col [pivot_col].shared2.order = k ; | 
|  |  | 
|  | /* increment order count by column thickness */ | 
|  | pivot_col_thickness = Col [pivot_col].shared1.thickness ; | 
|  | k += pivot_col_thickness ; | 
|  | COLAMD_ASSERT (pivot_col_thickness > 0) ; | 
|  |  | 
|  | /* === Garbage_collection, if necessary ============================= */ | 
|  |  | 
|  | needed_memory = COLAMD_MIN (pivot_col_score, n_col - k) ; | 
|  | if (pfree + needed_memory >= Alen) | 
|  | { | 
|  | pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; | 
|  | ngarbage++ ; | 
|  | /* after garbage collection we will have enough */ | 
|  | COLAMD_ASSERT (pfree + needed_memory < Alen) ; | 
|  | /* garbage collection has wiped out the Row[].shared2.mark array */ | 
|  | tag_mark = Eigen::internal::clear_mark (n_row, Row) ; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* === Compute pivot row pattern ==================================== */ | 
|  |  | 
|  | /* get starting location for this new merged row */ | 
|  | pivot_row_start = pfree ; | 
|  |  | 
|  | /* initialize new row counts to zero */ | 
|  | pivot_row_degree = 0 ; | 
|  |  | 
|  | /* tag pivot column as having been visited so it isn't included */ | 
|  | /* in merged pivot row */ | 
|  | Col [pivot_col].shared1.thickness = -pivot_col_thickness ; | 
|  |  | 
|  | /* pivot row is the union of all rows in the pivot column pattern */ | 
|  | cp = &A [Col [pivot_col].start] ; | 
|  | cp_end = cp + Col [pivot_col].length ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | /* get a row */ | 
|  | row = *cp++ ; | 
|  | COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ; | 
|  | /* skip if row is dead */ | 
|  | if (ROW_IS_DEAD (row)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | rp = &A [Row [row].start] ; | 
|  | rp_end = rp + Row [row].length ; | 
|  | while (rp < rp_end) | 
|  | { | 
|  | /* get a column */ | 
|  | col = *rp++ ; | 
|  | /* add the column, if alive and untagged */ | 
|  | col_thickness = Col [col].shared1.thickness ; | 
|  | if (col_thickness > 0 && COL_IS_ALIVE (col)) | 
|  | { | 
|  | /* tag column in pivot row */ | 
|  | Col [col].shared1.thickness = -col_thickness ; | 
|  | COLAMD_ASSERT (pfree < Alen) ; | 
|  | /* place column in pivot row */ | 
|  | A [pfree++] = col ; | 
|  | pivot_row_degree += col_thickness ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clear tag on pivot column */ | 
|  | Col [pivot_col].shared1.thickness = pivot_col_thickness ; | 
|  | max_deg = COLAMD_MAX (max_deg, pivot_row_degree) ; | 
|  |  | 
|  |  | 
|  | /* === Kill all rows used to construct pivot row ==================== */ | 
|  |  | 
|  | /* also kill pivot row, temporarily */ | 
|  | cp = &A [Col [pivot_col].start] ; | 
|  | cp_end = cp + Col [pivot_col].length ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | /* may be killing an already dead row */ | 
|  | row = *cp++ ; | 
|  | COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ; | 
|  | KILL_ROW (row) ; | 
|  | } | 
|  |  | 
|  | /* === Select a row index to use as the new pivot row =============== */ | 
|  |  | 
|  | pivot_row_length = pfree - pivot_row_start ; | 
|  | if (pivot_row_length > 0) | 
|  | { | 
|  | /* pick the "pivot" row arbitrarily (first row in col) */ | 
|  | pivot_row = A [Col [pivot_col].start] ; | 
|  | COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* there is no pivot row, since it is of zero length */ | 
|  | pivot_row = COLAMD_EMPTY ; | 
|  | COLAMD_ASSERT (pivot_row_length == 0) ; | 
|  | } | 
|  | COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; | 
|  |  | 
|  | /* === Approximate degree computation =============================== */ | 
|  |  | 
|  | /* Here begins the computation of the approximate degree.  The column */ | 
|  | /* score is the sum of the pivot row "length", plus the size of the */ | 
|  | /* set differences of each row in the column minus the pattern of the */ | 
|  | /* pivot row itself.  The column ("thickness") itself is also */ | 
|  | /* excluded from the column score (we thus use an approximate */ | 
|  | /* external degree). */ | 
|  |  | 
|  | /* The time taken by the following code (compute set differences, and */ | 
|  | /* add them up) is proportional to the size of the data structure */ | 
|  | /* being scanned - that is, the sum of the sizes of each column in */ | 
|  | /* the pivot row.  Thus, the amortized time to compute a column score */ | 
|  | /* is proportional to the size of that column (where size, in this */ | 
|  | /* context, is the column "length", or the number of row indices */ | 
|  | /* in that column).  The number of row indices in a column is */ | 
|  | /* monotonically non-decreasing, from the length of the original */ | 
|  | /* column on input to colamd. */ | 
|  |  | 
|  | /* === Compute set differences ====================================== */ | 
|  |  | 
|  | COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ; | 
|  |  | 
|  | /* pivot row is currently dead - it will be revived later. */ | 
|  |  | 
|  | COLAMD_DEBUG3 (("Pivot row: ")) ; | 
|  | /* for each column in pivot row */ | 
|  | rp = &A [pivot_row_start] ; | 
|  | rp_end = rp + pivot_row_length ; | 
|  | while (rp < rp_end) | 
|  | { | 
|  | col = *rp++ ; | 
|  | COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; | 
|  | COLAMD_DEBUG3 (("Col: %d\n", col)) ; | 
|  |  | 
|  | /* clear tags used to construct pivot row pattern */ | 
|  | col_thickness = -Col [col].shared1.thickness ; | 
|  | COLAMD_ASSERT (col_thickness > 0) ; | 
|  | Col [col].shared1.thickness = col_thickness ; | 
|  |  | 
|  | /* === Remove column from degree list =========================== */ | 
|  |  | 
|  | cur_score = Col [col].shared2.score ; | 
|  | prev_col = Col [col].shared3.prev ; | 
|  | next_col = Col [col].shared4.degree_next ; | 
|  | COLAMD_ASSERT (cur_score >= 0) ; | 
|  | COLAMD_ASSERT (cur_score <= n_col) ; | 
|  | COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ; | 
|  | if (prev_col == COLAMD_EMPTY) | 
|  | { | 
|  | head [cur_score] = next_col ; | 
|  | } | 
|  | else | 
|  | { | 
|  | Col [prev_col].shared4.degree_next = next_col ; | 
|  | } | 
|  | if (next_col != COLAMD_EMPTY) | 
|  | { | 
|  | Col [next_col].shared3.prev = prev_col ; | 
|  | } | 
|  |  | 
|  | /* === Scan the column ========================================== */ | 
|  |  | 
|  | cp = &A [Col [col].start] ; | 
|  | cp_end = cp + Col [col].length ; | 
|  | while (cp < cp_end) | 
|  | { | 
|  | /* get a row */ | 
|  | row = *cp++ ; | 
|  | row_mark = Row [row].shared2.mark ; | 
|  | /* skip if dead */ | 
|  | if (ROW_IS_MARKED_DEAD (row_mark)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | COLAMD_ASSERT (row != pivot_row) ; | 
|  | set_difference = row_mark - tag_mark ; | 
|  | /* check if the row has been seen yet */ | 
|  | if (set_difference < 0) | 
|  | { | 
|  | COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ; | 
|  | set_difference = Row [row].shared1.degree ; | 
|  | } | 
|  | /* subtract column thickness from this row's set difference */ | 
|  | set_difference -= col_thickness ; | 
|  | COLAMD_ASSERT (set_difference >= 0) ; | 
|  | /* absorb this row if the set difference becomes zero */ | 
|  | if (set_difference == 0) | 
|  | { | 
|  | COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; | 
|  | KILL_ROW (row) ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* save the new mark */ | 
|  | Row [row].shared2.mark = set_difference + tag_mark ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* === Add up set differences for each column ======================= */ | 
|  |  | 
|  | COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ; | 
|  |  | 
|  | /* for each column in pivot row */ | 
|  | rp = &A [pivot_row_start] ; | 
|  | rp_end = rp + pivot_row_length ; | 
|  | while (rp < rp_end) | 
|  | { | 
|  | /* get a column */ | 
|  | col = *rp++ ; | 
|  | COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; | 
|  | hash = 0 ; | 
|  | cur_score = 0 ; | 
|  | cp = &A [Col [col].start] ; | 
|  | /* compact the column */ | 
|  | new_cp = cp ; | 
|  | cp_end = cp + Col [col].length ; | 
|  |  | 
|  | COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; | 
|  |  | 
|  | while (cp < cp_end) | 
|  | { | 
|  | /* get a row */ | 
|  | row = *cp++ ; | 
|  | COLAMD_ASSERT(row >= 0 && row < n_row) ; | 
|  | row_mark = Row [row].shared2.mark ; | 
|  | /* skip if dead */ | 
|  | if (ROW_IS_MARKED_DEAD (row_mark)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | COLAMD_ASSERT (row_mark > tag_mark) ; | 
|  | /* compact the column */ | 
|  | *new_cp++ = row ; | 
|  | /* compute hash function */ | 
|  | hash += row ; | 
|  | /* add set difference */ | 
|  | cur_score += row_mark - tag_mark ; | 
|  | /* integer overflow... */ | 
|  | cur_score = COLAMD_MIN (cur_score, n_col) ; | 
|  | } | 
|  |  | 
|  | /* recompute the column's length */ | 
|  | Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ; | 
|  |  | 
|  | /* === Further mass elimination ================================= */ | 
|  |  | 
|  | if (Col [col].length == 0) | 
|  | { | 
|  | COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ; | 
|  | /* nothing left but the pivot row in this column */ | 
|  | KILL_PRINCIPAL_COL (col) ; | 
|  | pivot_row_degree -= Col [col].shared1.thickness ; | 
|  | COLAMD_ASSERT (pivot_row_degree >= 0) ; | 
|  | /* order it */ | 
|  | Col [col].shared2.order = k ; | 
|  | /* increment order count by column thickness */ | 
|  | k += Col [col].shared1.thickness ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* === Prepare for supercolumn detection ==================== */ | 
|  |  | 
|  | COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; | 
|  |  | 
|  | /* save score so far */ | 
|  | Col [col].shared2.score = cur_score ; | 
|  |  | 
|  | /* add column to hash table, for supercolumn detection */ | 
|  | hash %= n_col + 1 ; | 
|  |  | 
|  | COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; | 
|  | COLAMD_ASSERT (hash <= n_col) ; | 
|  |  | 
|  | head_column = head [hash] ; | 
|  | if (head_column > COLAMD_EMPTY) | 
|  | { | 
|  | /* degree list "hash" is non-empty, use prev (shared3) of */ | 
|  | /* first column in degree list as head of hash bucket */ | 
|  | first_col = Col [head_column].shared3.headhash ; | 
|  | Col [head_column].shared3.headhash = col ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* degree list "hash" is empty, use head as hash bucket */ | 
|  | first_col = - (head_column + 2) ; | 
|  | head [hash] = - (col + 2) ; | 
|  | } | 
|  | Col [col].shared4.hash_next = first_col ; | 
|  |  | 
|  | /* save hash function in Col [col].shared3.hash */ | 
|  | Col [col].shared3.hash = (IndexType) hash ; | 
|  | COLAMD_ASSERT (COL_IS_ALIVE (col)) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The approximate external column degree is now computed.  */ | 
|  |  | 
|  | /* === Supercolumn detection ======================================== */ | 
|  |  | 
|  | COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ; | 
|  |  | 
|  | Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ; | 
|  |  | 
|  | /* === Kill the pivotal column ====================================== */ | 
|  |  | 
|  | KILL_PRINCIPAL_COL (pivot_col) ; | 
|  |  | 
|  | /* === Clear mark =================================================== */ | 
|  |  | 
|  | tag_mark += (max_deg + 1) ; | 
|  | if (tag_mark >= max_mark) | 
|  | { | 
|  | COLAMD_DEBUG2 (("clearing tag_mark\n")) ; | 
|  | tag_mark = Eigen::internal::clear_mark (n_row, Row) ; | 
|  | } | 
|  |  | 
|  | /* === Finalize the new pivot row, and column scores ================ */ | 
|  |  | 
|  | COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ; | 
|  |  | 
|  | /* for each column in pivot row */ | 
|  | rp = &A [pivot_row_start] ; | 
|  | /* compact the pivot row */ | 
|  | new_rp = rp ; | 
|  | rp_end = rp + pivot_row_length ; | 
|  | while (rp < rp_end) | 
|  | { | 
|  | col = *rp++ ; | 
|  | /* skip dead columns */ | 
|  | if (COL_IS_DEAD (col)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  | *new_rp++ = col ; | 
|  | /* add new pivot row to column */ | 
|  | A [Col [col].start + (Col [col].length++)] = pivot_row ; | 
|  |  | 
|  | /* retrieve score so far and add on pivot row's degree. */ | 
|  | /* (we wait until here for this in case the pivot */ | 
|  | /* row's degree was reduced due to mass elimination). */ | 
|  | cur_score = Col [col].shared2.score + pivot_row_degree ; | 
|  |  | 
|  | /* calculate the max possible score as the number of */ | 
|  | /* external columns minus the 'k' value minus the */ | 
|  | /* columns thickness */ | 
|  | max_score = n_col - k - Col [col].shared1.thickness ; | 
|  |  | 
|  | /* make the score the external degree of the union-of-rows */ | 
|  | cur_score -= Col [col].shared1.thickness ; | 
|  |  | 
|  | /* make sure score is less or equal than the max score */ | 
|  | cur_score = COLAMD_MIN (cur_score, max_score) ; | 
|  | COLAMD_ASSERT (cur_score >= 0) ; | 
|  |  | 
|  | /* store updated score */ | 
|  | Col [col].shared2.score = cur_score ; | 
|  |  | 
|  | /* === Place column back in degree list ========================= */ | 
|  |  | 
|  | COLAMD_ASSERT (min_score >= 0) ; | 
|  | COLAMD_ASSERT (min_score <= n_col) ; | 
|  | COLAMD_ASSERT (cur_score >= 0) ; | 
|  | COLAMD_ASSERT (cur_score <= n_col) ; | 
|  | COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ; | 
|  | next_col = head [cur_score] ; | 
|  | Col [col].shared4.degree_next = next_col ; | 
|  | Col [col].shared3.prev = COLAMD_EMPTY ; | 
|  | if (next_col != COLAMD_EMPTY) | 
|  | { | 
|  | Col [next_col].shared3.prev = col ; | 
|  | } | 
|  | head [cur_score] = col ; | 
|  |  | 
|  | /* see if this score is less than current min */ | 
|  | min_score = COLAMD_MIN (min_score, cur_score) ; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* === Resurrect the new pivot row ================================== */ | 
|  |  | 
|  | if (pivot_row_degree > 0) | 
|  | { | 
|  | /* update pivot row length to reflect any cols that were killed */ | 
|  | /* during super-col detection and mass elimination */ | 
|  | Row [pivot_row].start  = pivot_row_start ; | 
|  | Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ; | 
|  | Row [pivot_row].shared1.degree = pivot_row_degree ; | 
|  | Row [pivot_row].shared2.mark = 0 ; | 
|  | /* pivot row is no longer dead */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === All principal columns have now been ordered ====================== */ | 
|  |  | 
|  | return (ngarbage) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === order_children ======================================================= */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | The find_ordering routine has ordered all of the principal columns (the | 
|  | representatives of the supercolumns).  The non-principal columns have not | 
|  | yet been ordered.  This routine orders those columns by walking up the | 
|  | parent tree (a column is a child of the column which absorbed it).  The | 
|  | final permutation vector is then placed in p [0 ... n_col-1], with p [0] | 
|  | being the first column, and p [n_col-1] being the last.  It doesn't look | 
|  | like it at first glance, but be assured that this routine takes time linear | 
|  | in the number of columns.  Although not immediately obvious, the time | 
|  | taken by this routine is O (n_col), that is, linear in the number of | 
|  | columns.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static inline  void order_children | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_col,      /* number of columns of A */ | 
|  | colamd_col<IndexType> Col [],    /* of size n_col+1 */ | 
|  | IndexType p []      /* p [0 ... n_col-1] is the column permutation*/ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType i ;     /* loop counter for all columns */ | 
|  | IndexType c ;     /* column index */ | 
|  | IndexType parent ;    /* index of column's parent */ | 
|  | IndexType order ;     /* column's order */ | 
|  |  | 
|  | /* === Order each non-principal column ================================== */ | 
|  |  | 
|  | for (i = 0 ; i < n_col ; i++) | 
|  | { | 
|  | /* find an un-ordered non-principal column */ | 
|  | COLAMD_ASSERT (COL_IS_DEAD (i)) ; | 
|  | if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY) | 
|  | { | 
|  | parent = i ; | 
|  | /* once found, find its principal parent */ | 
|  | do | 
|  | { | 
|  | parent = Col [parent].shared1.parent ; | 
|  | } while (!COL_IS_DEAD_PRINCIPAL (parent)) ; | 
|  |  | 
|  | /* now, order all un-ordered non-principal columns along path */ | 
|  | /* to this parent.  collapse tree at the same time */ | 
|  | c = i ; | 
|  | /* get order of parent */ | 
|  | order = Col [parent].shared2.order ; | 
|  |  | 
|  | do | 
|  | { | 
|  | COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ; | 
|  |  | 
|  | /* order this column */ | 
|  | Col [c].shared2.order = order++ ; | 
|  | /* collaps tree */ | 
|  | Col [c].shared1.parent = parent ; | 
|  |  | 
|  | /* get immediate parent of this column */ | 
|  | c = Col [c].shared1.parent ; | 
|  |  | 
|  | /* continue until we hit an ordered column.  There are */ | 
|  | /* guarranteed not to be anymore unordered columns */ | 
|  | /* above an ordered column */ | 
|  | } while (Col [c].shared2.order == COLAMD_EMPTY) ; | 
|  |  | 
|  | /* re-order the super_col parent to largest order for this group */ | 
|  | Col [parent].shared2.order = order ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Generate the permutation ========================================= */ | 
|  |  | 
|  | for (c = 0 ; c < n_col ; c++) | 
|  | { | 
|  | p [Col [c].shared2.order] = c ; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === detect_super_cols ==================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Detects supercolumns by finding matches between columns in the hash buckets. | 
|  | Check amongst columns in the set A [row_start ... row_start + row_length-1]. | 
|  | The columns under consideration are currently *not* in the degree lists, | 
|  | and have already been placed in the hash buckets. | 
|  |  | 
|  | The hash bucket for columns whose hash function is equal to h is stored | 
|  | as follows: | 
|  |  | 
|  | if head [h] is >= 0, then head [h] contains a degree list, so: | 
|  |  | 
|  | head [h] is the first column in degree bucket h. | 
|  | Col [head [h]].headhash gives the first column in hash bucket h. | 
|  |  | 
|  | otherwise, the degree list is empty, and: | 
|  |  | 
|  | -(head [h] + 2) is the first column in hash bucket h. | 
|  |  | 
|  | For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous | 
|  | column" pointer.  Col [c].shared3.hash is used instead as the hash number | 
|  | for that column.  The value of Col [c].shared4.hash_next is the next column | 
|  | in the same hash bucket. | 
|  |  | 
|  | Assuming no, or "few" hash collisions, the time taken by this routine is | 
|  | linear in the sum of the sizes (lengths) of each column whose score has | 
|  | just been computed in the approximate degree computation. | 
|  | Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static void detect_super_cols | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | colamd_col<IndexType> Col [],    /* of size n_col+1 */ | 
|  | IndexType A [],     /* row indices of A */ | 
|  | IndexType head [],    /* head of degree lists and hash buckets */ | 
|  | IndexType row_start,    /* pointer to set of columns to check */ | 
|  | IndexType row_length    /* number of columns to check */ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType hash ;      /* hash value for a column */ | 
|  | IndexType *rp ;     /* pointer to a row */ | 
|  | IndexType c ;     /* a column index */ | 
|  | IndexType super_c ;   /* column index of the column to absorb into */ | 
|  | IndexType *cp1 ;      /* column pointer for column super_c */ | 
|  | IndexType *cp2 ;      /* column pointer for column c */ | 
|  | IndexType length ;    /* length of column super_c */ | 
|  | IndexType prev_c ;    /* column preceding c in hash bucket */ | 
|  | IndexType i ;     /* loop counter */ | 
|  | IndexType *rp_end ;   /* pointer to the end of the row */ | 
|  | IndexType col ;     /* a column index in the row to check */ | 
|  | IndexType head_column ;   /* first column in hash bucket or degree list */ | 
|  | IndexType first_col ;   /* first column in hash bucket */ | 
|  |  | 
|  | /* === Consider each column in the row ================================== */ | 
|  |  | 
|  | rp = &A [row_start] ; | 
|  | rp_end = rp + row_length ; | 
|  | while (rp < rp_end) | 
|  | { | 
|  | col = *rp++ ; | 
|  | if (COL_IS_DEAD (col)) | 
|  | { | 
|  | continue ; | 
|  | } | 
|  |  | 
|  | /* get hash number for this column */ | 
|  | hash = Col [col].shared3.hash ; | 
|  | COLAMD_ASSERT (hash <= n_col) ; | 
|  |  | 
|  | /* === Get the first column in this hash bucket ===================== */ | 
|  |  | 
|  | head_column = head [hash] ; | 
|  | if (head_column > COLAMD_EMPTY) | 
|  | { | 
|  | first_col = Col [head_column].shared3.headhash ; | 
|  | } | 
|  | else | 
|  | { | 
|  | first_col = - (head_column + 2) ; | 
|  | } | 
|  |  | 
|  | /* === Consider each column in the hash bucket ====================== */ | 
|  |  | 
|  | for (super_c = first_col ; super_c != COLAMD_EMPTY ; | 
|  | super_c = Col [super_c].shared4.hash_next) | 
|  | { | 
|  | COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ; | 
|  | COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ; | 
|  | length = Col [super_c].length ; | 
|  |  | 
|  | /* prev_c is the column preceding column c in the hash bucket */ | 
|  | prev_c = super_c ; | 
|  |  | 
|  | /* === Compare super_c with all columns after it ================ */ | 
|  |  | 
|  | for (c = Col [super_c].shared4.hash_next ; | 
|  | c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next) | 
|  | { | 
|  | COLAMD_ASSERT (c != super_c) ; | 
|  | COLAMD_ASSERT (COL_IS_ALIVE (c)) ; | 
|  | COLAMD_ASSERT (Col [c].shared3.hash == hash) ; | 
|  |  | 
|  | /* not identical if lengths or scores are different */ | 
|  | if (Col [c].length != length || | 
|  | Col [c].shared2.score != Col [super_c].shared2.score) | 
|  | { | 
|  | prev_c = c ; | 
|  | continue ; | 
|  | } | 
|  |  | 
|  | /* compare the two columns */ | 
|  | cp1 = &A [Col [super_c].start] ; | 
|  | cp2 = &A [Col [c].start] ; | 
|  |  | 
|  | for (i = 0 ; i < length ; i++) | 
|  | { | 
|  | /* the columns are "clean" (no dead rows) */ | 
|  | COLAMD_ASSERT (ROW_IS_ALIVE (*cp1))  ; | 
|  | COLAMD_ASSERT (ROW_IS_ALIVE (*cp2))  ; | 
|  | /* row indices will same order for both supercols, */ | 
|  | /* no gather scatter nessasary */ | 
|  | if (*cp1++ != *cp2++) | 
|  | { | 
|  | break ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* the two columns are different if the for-loop "broke" */ | 
|  | if (i != length) | 
|  | { | 
|  | prev_c = c ; | 
|  | continue ; | 
|  | } | 
|  |  | 
|  | /* === Got it!  two columns are identical =================== */ | 
|  |  | 
|  | COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; | 
|  |  | 
|  | Col [super_c].shared1.thickness += Col [c].shared1.thickness ; | 
|  | Col [c].shared1.parent = super_c ; | 
|  | KILL_NON_PRINCIPAL_COL (c) ; | 
|  | /* order c later, in order_children() */ | 
|  | Col [c].shared2.order = COLAMD_EMPTY ; | 
|  | /* remove c from hash bucket */ | 
|  | Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Empty this hash bucket ======================================= */ | 
|  |  | 
|  | if (head_column > COLAMD_EMPTY) | 
|  | { | 
|  | /* corresponding degree list "hash" is not empty */ | 
|  | Col [head_column].shared3.headhash = COLAMD_EMPTY ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* corresponding degree list "hash" is empty */ | 
|  | head [hash] = COLAMD_EMPTY ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === garbage_collection =================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Defragments and compacts columns and rows in the workspace A.  Used when | 
|  | all avaliable memory has been used while performing row merging.  Returns | 
|  | the index of the first free position in A, after garbage collection.  The | 
|  | time taken by this routine is linear is the size of the array A, which is | 
|  | itself linear in the number of nonzeros in the input matrix. | 
|  | Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static IndexType garbage_collection  /* returns the new value of pfree */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,      /* number of rows */ | 
|  | IndexType n_col,      /* number of columns */ | 
|  | Colamd_Row<IndexType> Row [],    /* row info */ | 
|  | colamd_col<IndexType> Col [],    /* column info */ | 
|  | IndexType A [],     /* A [0 ... Alen-1] holds the matrix */ | 
|  | IndexType *pfree      /* &A [0] ... pfree is in use */ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType *psrc ;     /* source pointer */ | 
|  | IndexType *pdest ;    /* destination pointer */ | 
|  | IndexType j ;     /* counter */ | 
|  | IndexType r ;     /* a row index */ | 
|  | IndexType c ;     /* a column index */ | 
|  | IndexType length ;    /* length of a row or column */ | 
|  |  | 
|  | /* === Defragment the columns =========================================== */ | 
|  |  | 
|  | pdest = &A[0] ; | 
|  | for (c = 0 ; c < n_col ; c++) | 
|  | { | 
|  | if (COL_IS_ALIVE (c)) | 
|  | { | 
|  | psrc = &A [Col [c].start] ; | 
|  |  | 
|  | /* move and compact the column */ | 
|  | COLAMD_ASSERT (pdest <= psrc) ; | 
|  | Col [c].start = (IndexType) (pdest - &A [0]) ; | 
|  | length = Col [c].length ; | 
|  | for (j = 0 ; j < length ; j++) | 
|  | { | 
|  | r = *psrc++ ; | 
|  | if (ROW_IS_ALIVE (r)) | 
|  | { | 
|  | *pdest++ = r ; | 
|  | } | 
|  | } | 
|  | Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Prepare to defragment the rows =================================== */ | 
|  |  | 
|  | for (r = 0 ; r < n_row ; r++) | 
|  | { | 
|  | if (ROW_IS_ALIVE (r)) | 
|  | { | 
|  | if (Row [r].length == 0) | 
|  | { | 
|  | /* this row is of zero length.  cannot compact it, so kill it */ | 
|  | COLAMD_DEBUG3 (("Defrag row kill\n")) ; | 
|  | KILL_ROW (r) ; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* save first column index in Row [r].shared2.first_column */ | 
|  | psrc = &A [Row [r].start] ; | 
|  | Row [r].shared2.first_column = *psrc ; | 
|  | COLAMD_ASSERT (ROW_IS_ALIVE (r)) ; | 
|  | /* flag the start of the row with the one's complement of row */ | 
|  | *psrc = ONES_COMPLEMENT (r) ; | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* === Defragment the rows ============================================== */ | 
|  |  | 
|  | psrc = pdest ; | 
|  | while (psrc < pfree) | 
|  | { | 
|  | /* find a negative number ... the start of a row */ | 
|  | if (*psrc++ < 0) | 
|  | { | 
|  | psrc-- ; | 
|  | /* get the row index */ | 
|  | r = ONES_COMPLEMENT (*psrc) ; | 
|  | COLAMD_ASSERT (r >= 0 && r < n_row) ; | 
|  | /* restore first column index */ | 
|  | *psrc = Row [r].shared2.first_column ; | 
|  | COLAMD_ASSERT (ROW_IS_ALIVE (r)) ; | 
|  |  | 
|  | /* move and compact the row */ | 
|  | COLAMD_ASSERT (pdest <= psrc) ; | 
|  | Row [r].start = (IndexType) (pdest - &A [0]) ; | 
|  | length = Row [r].length ; | 
|  | for (j = 0 ; j < length ; j++) | 
|  | { | 
|  | c = *psrc++ ; | 
|  | if (COL_IS_ALIVE (c)) | 
|  | { | 
|  | *pdest++ = c ; | 
|  | } | 
|  | } | 
|  | Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ; | 
|  |  | 
|  | } | 
|  | } | 
|  | /* ensure we found all the rows */ | 
|  | COLAMD_ASSERT (debug_rows == 0) ; | 
|  |  | 
|  | /* === Return the new value of pfree ==================================== */ | 
|  |  | 
|  | return ((IndexType) (pdest - &A [0])) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* ========================================================================== */ | 
|  | /* === clear_mark =========================================================== */ | 
|  | /* ========================================================================== */ | 
|  |  | 
|  | /* | 
|  | Clears the Row [].shared2.mark array, and returns the new tag_mark. | 
|  | Return value is the new tag_mark.  Not user-callable. | 
|  | */ | 
|  | template <typename IndexType> | 
|  | static inline  IndexType clear_mark  /* return the new value for tag_mark */ | 
|  | ( | 
|  | /* === Parameters ======================================================= */ | 
|  |  | 
|  | IndexType n_row,    /* number of rows in A */ | 
|  | Colamd_Row<IndexType> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ | 
|  | ) | 
|  | { | 
|  | /* === Local variables ================================================== */ | 
|  |  | 
|  | IndexType r ; | 
|  |  | 
|  | for (r = 0 ; r < n_row ; r++) | 
|  | { | 
|  | if (ROW_IS_ALIVE (r)) | 
|  | { | 
|  | Row [r].shared2.mark = 0 ; | 
|  | } | 
|  | } | 
|  | return (1) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | } // namespace internal | 
|  | #endif |