| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/SVD> | 
 |  | 
 | template<typename MatrixType> void upperbidiag(const MatrixType& m) | 
 | { | 
 |   const typename MatrixType::Index rows = m.rows(); | 
 |   const typename MatrixType::Index cols = m.cols(); | 
 |  | 
 |   typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime,  MatrixType::ColsAtCompileTime> RealMatrixType; | 
 |   typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime,  MatrixType::RowsAtCompileTime> TransposeMatrixType; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows,cols); | 
 |   internal::UpperBidiagonalization<MatrixType> ubd(a); | 
 |   RealMatrixType b(rows, cols); | 
 |   b.setZero(); | 
 |   b.block(0,0,cols,cols) = ubd.bidiagonal(); | 
 |   MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint(); | 
 |   VERIFY_IS_APPROX(a,c); | 
 |   TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint(); | 
 |   VERIFY_IS_APPROX(a.adjoint(),d); | 
 | } | 
 |  | 
 | void test_upperbidiagonalization() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |    CALL_SUBTEST_1( upperbidiag(MatrixXf(3,3)) ); | 
 |    CALL_SUBTEST_2( upperbidiag(MatrixXd(17,12)) ); | 
 |    CALL_SUBTEST_3( upperbidiag(MatrixXcf(20,20)) ); | 
 |    CALL_SUBTEST_4( upperbidiag(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(16,15)) ); | 
 |    CALL_SUBTEST_5( upperbidiag(Matrix<float,6,4>()) ); | 
 |    CALL_SUBTEST_6( upperbidiag(Matrix<float,5,5>()) ); | 
 |    CALL_SUBTEST_7( upperbidiag(Matrix<double,4,3>()) ); | 
 |   } | 
 | } |