| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_ALIGNED_VECTOR3 | 
 | #define EIGEN_ALIGNED_VECTOR3 | 
 |  | 
 | #include <Eigen/Geometry> | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** | 
 |   * \defgroup AlignedVector3_Module Aligned vector3 module | 
 |   * | 
 |   * \code | 
 |   * #include <unsupported/Eigen/AlignedVector3> | 
 |   * \endcode | 
 |   */ | 
 |   //@{ | 
 |  | 
 |  | 
 | /** \class AlignedVector3 | 
 |   * | 
 |   * \brief A vectorization friendly 3D vector | 
 |   * | 
 |   * This class represents a 3D vector internally using a 4D vector | 
 |   * such that vectorization can be seamlessly enabled. Of course, | 
 |   * the same result can be achieved by directly using a 4D vector. | 
 |   * This class makes this process simpler. | 
 |   * | 
 |   */ | 
 | // TODO specialize Cwise | 
 | template<typename _Scalar> class AlignedVector3; | 
 |  | 
 | namespace internal { | 
 | template<typename _Scalar> struct traits<AlignedVector3<_Scalar> > | 
 |   : traits<Matrix<_Scalar,3,1,0,4,1> > | 
 | { | 
 | }; | 
 | } | 
 |  | 
 | template<typename _Scalar> class AlignedVector3 | 
 |   : public MatrixBase<AlignedVector3<_Scalar> > | 
 | { | 
 |     typedef Matrix<_Scalar,4,1> CoeffType; | 
 |     CoeffType m_coeffs; | 
 |   public: | 
 |  | 
 |     typedef MatrixBase<AlignedVector3<_Scalar> > Base;	 | 
 |     EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3) | 
 |     using Base::operator*; | 
 |  | 
 |     inline Index rows() const { return 3; } | 
 |     inline Index cols() const { return 1; } | 
 |      | 
 |     Scalar* data() { return m_coeffs.data(); } | 
 |     const Scalar* data() const { return m_coeffs.data(); } | 
 |     Index innerStride() const { return 1; } | 
 |     Index outerStride() const { return m_coeffs.outerStride(); } | 
 |  | 
 |     inline const Scalar& coeff(Index row, Index col) const | 
 |     { return m_coeffs.coeff(row, col); } | 
 |  | 
 |     inline Scalar& coeffRef(Index row, Index col) | 
 |     { return m_coeffs.coeffRef(row, col); } | 
 |  | 
 |     inline const Scalar& coeff(Index index) const | 
 |     { return m_coeffs.coeff(index); } | 
 |  | 
 |     inline Scalar& coeffRef(Index index) | 
 |     { return m_coeffs.coeffRef(index);} | 
 |  | 
 |  | 
 |     inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z) | 
 |       : m_coeffs(x, y, z, Scalar(0)) | 
 |     {} | 
 |  | 
 |     inline AlignedVector3(const AlignedVector3& other) | 
 |       : Base(), m_coeffs(other.m_coeffs) | 
 |     {} | 
 |  | 
 |     template<typename XprType, int Size=XprType::SizeAtCompileTime> | 
 |     struct generic_assign_selector {}; | 
 |  | 
 |     template<typename XprType> struct generic_assign_selector<XprType,4> | 
 |     { | 
 |       inline static void run(AlignedVector3& dest, const XprType& src) | 
 |       { | 
 |         dest.m_coeffs = src; | 
 |       } | 
 |     }; | 
 |  | 
 |     template<typename XprType> struct generic_assign_selector<XprType,3> | 
 |     { | 
 |       inline static void run(AlignedVector3& dest, const XprType& src) | 
 |       { | 
 |         dest.m_coeffs.template head<3>() = src; | 
 |         dest.m_coeffs.w() = Scalar(0); | 
 |       } | 
 |     }; | 
 |  | 
 |     template<typename Derived> | 
 |     inline AlignedVector3(const MatrixBase<Derived>& other) | 
 |     { | 
 |       generic_assign_selector<Derived>::run(*this,other.derived()); | 
 |     } | 
 |  | 
 |     inline AlignedVector3& operator=(const AlignedVector3& other) | 
 |     { m_coeffs = other.m_coeffs; return *this; } | 
 |  | 
 |     template <typename Derived> | 
 |     inline AlignedVector3& operator=(const MatrixBase<Derived>& other) | 
 |     { | 
 |       generic_assign_selector<Derived>::run(*this,other.derived()); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     inline AlignedVector3 operator+(const AlignedVector3& other) const | 
 |     { return AlignedVector3(m_coeffs + other.m_coeffs); } | 
 |  | 
 |     inline AlignedVector3& operator+=(const AlignedVector3& other) | 
 |     { m_coeffs += other.m_coeffs; return *this; } | 
 |  | 
 |     inline AlignedVector3 operator-(const AlignedVector3& other) const | 
 |     { return AlignedVector3(m_coeffs - other.m_coeffs); } | 
 |  | 
 |     inline AlignedVector3 operator-=(const AlignedVector3& other) | 
 |     { m_coeffs -= other.m_coeffs; return *this; } | 
 |  | 
 |     inline AlignedVector3 operator*(const Scalar& s) const | 
 |     { return AlignedVector3(m_coeffs * s); } | 
 |  | 
 |     inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec) | 
 |     { return AlignedVector3(s * vec.m_coeffs); } | 
 |  | 
 |     inline AlignedVector3& operator*=(const Scalar& s) | 
 |     { m_coeffs *= s; return *this; } | 
 |  | 
 |     inline AlignedVector3 operator/(const Scalar& s) const | 
 |     { return AlignedVector3(m_coeffs / s); } | 
 |  | 
 |     inline AlignedVector3& operator/=(const Scalar& s) | 
 |     { m_coeffs /= s; return *this; } | 
 |  | 
 |     inline Scalar dot(const AlignedVector3& other) const | 
 |     { | 
 |       eigen_assert(m_coeffs.w()==Scalar(0)); | 
 |       eigen_assert(other.m_coeffs.w()==Scalar(0)); | 
 |       return m_coeffs.dot(other.m_coeffs); | 
 |     } | 
 |  | 
 |     inline void normalize() | 
 |     { | 
 |       m_coeffs /= norm(); | 
 |     } | 
 |  | 
 |     inline AlignedVector3 normalized() const | 
 |     { | 
 |       return AlignedVector3(m_coeffs / norm()); | 
 |     } | 
 |  | 
 |     inline Scalar sum() const | 
 |     { | 
 |       eigen_assert(m_coeffs.w()==Scalar(0)); | 
 |       return m_coeffs.sum(); | 
 |     } | 
 |  | 
 |     inline Scalar squaredNorm() const | 
 |     { | 
 |       eigen_assert(m_coeffs.w()==Scalar(0)); | 
 |       return m_coeffs.squaredNorm(); | 
 |     } | 
 |  | 
 |     inline Scalar norm() const | 
 |     { | 
 |       using std::sqrt; | 
 |       return sqrt(squaredNorm()); | 
 |     } | 
 |  | 
 |     inline AlignedVector3 cross(const AlignedVector3& other) const | 
 |     { | 
 |       return AlignedVector3(m_coeffs.cross3(other.m_coeffs)); | 
 |     } | 
 |  | 
 |     template<typename Derived> | 
 |     inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const | 
 |     { | 
 |       return m_coeffs.template head<3>().isApprox(other,eps); | 
 |     } | 
 |      | 
 |     CoeffType& coeffs() { return m_coeffs; } | 
 |     const CoeffType& coeffs() const { return m_coeffs; } | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename _Scalar> | 
 | struct eval<AlignedVector3<_Scalar>, Dense> | 
 | { | 
 |  typedef const AlignedVector3<_Scalar>& type; | 
 | }; | 
 |  | 
 | template<typename Scalar> | 
 | struct evaluator<AlignedVector3<Scalar> > | 
 |   : evaluator<Matrix<Scalar,4,1> >::type | 
 | { | 
 |   typedef AlignedVector3<Scalar> XprType; | 
 |   typedef typename evaluator<Matrix<Scalar,4,1> >::type Base; | 
 |    | 
 |   typedef evaluator type; | 
 |   typedef evaluator nestedType; | 
 |  | 
 |   evaluator(const XprType &m) : Base(m.coeffs()) {}   | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | //@} | 
 |  | 
 | } | 
 |  | 
 | #endif // EIGEN_ALIGNED_VECTOR3 |