| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_GMRES_H | 
 | #define EIGEN_GMRES_H | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** | 
 | * Generalized Minimal Residual Algorithm based on the | 
 | * Arnoldi algorithm implemented with Householder reflections. | 
 | * | 
 | * Parameters: | 
 | *  \param mat       matrix of linear system of equations | 
 | *  \param Rhs       right hand side vector of linear system of equations | 
 | *  \param x         on input: initial guess, on output: solution | 
 | *  \param precond   preconditioner used | 
 | *  \param iters     on input: maximum number of iterations to perform | 
 | *                   on output: number of iterations performed | 
 | *  \param restart   number of iterations for a restart | 
 | *  \param tol_error on input: relative residual tolerance | 
 | *                   on output: residuum achieved | 
 | * | 
 | * \sa IterativeMethods::bicgstab() | 
 | * | 
 | * | 
 | * For references, please see: | 
 | * | 
 | * Saad, Y. and Schultz, M. H. | 
 | * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. | 
 | * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. | 
 | * | 
 | * Saad, Y. | 
 | * Iterative Methods for Sparse Linear Systems. | 
 | * Society for Industrial and Applied Mathematics, Philadelphia, 2003. | 
 | * | 
 | * Walker, H. F. | 
 | * Implementations of the GMRES method. | 
 | * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. | 
 | * | 
 | * Walker, H. F. | 
 | * Implementation of the GMRES Method using Householder Transformations. | 
 | * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. | 
 | * | 
 | */ | 
 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | 
 | bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, | 
 |     Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) { | 
 |  | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |  | 
 |   typedef typename Dest::RealScalar RealScalar; | 
 |   typedef typename Dest::Scalar Scalar; | 
 |   typedef Matrix < Scalar, Dynamic, 1 > VectorType; | 
 |   typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType; | 
 |  | 
 |   RealScalar tol = tol_error; | 
 |   const Index maxIters = iters; | 
 |   iters = 0; | 
 |  | 
 |   const Index m = mat.rows(); | 
 |  | 
 |   // residual and preconditioned residual | 
 |   VectorType p0 = rhs - mat*x; | 
 |   VectorType r0 = precond.solve(p0); | 
 |  | 
 |   const RealScalar r0Norm = r0.norm(); | 
 |  | 
 |   // is initial guess already good enough? | 
 |   if(r0Norm == 0) | 
 |   { | 
 |     tol_error = 0; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // storage for Hessenberg matrix and Householder data | 
 |   FMatrixType H   = FMatrixType::Zero(m, restart + 1); | 
 |   VectorType w    = VectorType::Zero(restart + 1); | 
 |   VectorType tau  = VectorType::Zero(restart + 1); | 
 |  | 
 |   // storage for Jacobi rotations | 
 |   std::vector < JacobiRotation < Scalar > > G(restart); | 
 |    | 
 |   // storage for temporaries | 
 |   VectorType t(m), v(m), workspace(m), x_new(m); | 
 |  | 
 |   // generate first Householder vector | 
 |   Ref<VectorType> H0_tail = H.col(0).tail(m - 1); | 
 |   RealScalar beta; | 
 |   r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); | 
 |   w(0) = Scalar(beta); | 
 |    | 
 |   for (Index k = 1; k <= restart; ++k) | 
 |   { | 
 |     ++iters; | 
 |  | 
 |     v = VectorType::Unit(m, k - 1); | 
 |  | 
 |     // apply Householder reflections H_{1} ... H_{k-1} to v | 
 |     // TODO: use a HouseholderSequence | 
 |     for (Index i = k - 1; i >= 0; --i) { | 
 |       v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | 
 |     } | 
 |  | 
 |     // apply matrix M to v:  v = mat * v; | 
 |     t.noalias() = mat * v; | 
 |     v = precond.solve(t); | 
 |  | 
 |     // apply Householder reflections H_{k-1} ... H_{1} to v | 
 |     // TODO: use a HouseholderSequence | 
 |     for (Index i = 0; i < k; ++i) { | 
 |       v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | 
 |     } | 
 |  | 
 |     if (v.tail(m - k).norm() != 0.0) | 
 |     { | 
 |       if (k <= restart) | 
 |       { | 
 |         // generate new Householder vector | 
 |         Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1); | 
 |         v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta); | 
 |  | 
 |         // apply Householder reflection H_{k} to v | 
 |         v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data()); | 
 |       } | 
 |     } | 
 |  | 
 |     if (k > 1) | 
 |     { | 
 |       for (Index i = 0; i < k - 1; ++i) | 
 |       { | 
 |         // apply old Givens rotations to v | 
 |         v.applyOnTheLeft(i, i + 1, G[i].adjoint()); | 
 |       } | 
 |     } | 
 |  | 
 |     if (k<m && v(k) != (Scalar) 0) | 
 |     { | 
 |       // determine next Givens rotation | 
 |       G[k - 1].makeGivens(v(k - 1), v(k)); | 
 |  | 
 |       // apply Givens rotation to v and w | 
 |       v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); | 
 |       w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); | 
 |     } | 
 |  | 
 |     // insert coefficients into upper matrix triangle | 
 |     H.col(k-1).head(k) = v.head(k); | 
 |  | 
 |     bool stop = (k==m || abs(w(k)) < tol * r0Norm || iters == maxIters); | 
 |  | 
 |     if (stop || k == restart) | 
 |     { | 
 |       // solve upper triangular system | 
 |       Ref<VectorType> y = w.head(k); | 
 |       H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y); | 
 |  | 
 |       // use Horner-like scheme to calculate solution vector | 
 |       x_new.setZero(); | 
 |       for (Index i = k - 1; i >= 0; --i) | 
 |       { | 
 |         x_new(i) += y(i); | 
 |         // apply Householder reflection H_{i} to x_new | 
 |         x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); | 
 |       } | 
 |  | 
 |       x += x_new; | 
 |  | 
 |       if(stop) | 
 |       { | 
 |         return true; | 
 |       } | 
 |       else | 
 |       { | 
 |         k=0; | 
 |  | 
 |         // reset data for restart | 
 |         p0.noalias() = rhs - mat*x; | 
 |         r0 = precond.solve(p0); | 
 |  | 
 |         // clear Hessenberg matrix and Householder data | 
 |         H.setZero(); | 
 |         w.setZero(); | 
 |         tau.setZero(); | 
 |  | 
 |         // generate first Householder vector | 
 |         r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); | 
 |         w(0) = Scalar(beta); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 |  | 
 | } | 
 |  | 
 | } | 
 |  | 
 | template< typename _MatrixType, | 
 |           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > | 
 | class GMRES; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template< typename _MatrixType, typename _Preconditioner> | 
 | struct traits<GMRES<_MatrixType,_Preconditioner> > | 
 | { | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef _Preconditioner Preconditioner; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * \brief A GMRES solver for sparse square problems | 
 |   * | 
 |   * This class allows to solve for A.x = b sparse linear problems using a generalized minimal | 
 |   * residual method. The vectors x and b can be either dense or sparse. | 
 |   * | 
 |   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. | 
 |   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner | 
 |   * | 
 |   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | 
 |   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | 
 |   * and NumTraits<Scalar>::epsilon() for the tolerance. | 
 |   * | 
 |   * This class can be used as the direct solver classes. Here is a typical usage example: | 
 |   * \code | 
 |   * int n = 10000; | 
 |   * VectorXd x(n), b(n); | 
 |   * SparseMatrix<double> A(n,n); | 
 |   * // fill A and b | 
 |   * GMRES<SparseMatrix<double> > solver(A); | 
 |   * x = solver.solve(b); | 
 |   * std::cout << "#iterations:     " << solver.iterations() << std::endl; | 
 |   * std::cout << "estimated error: " << solver.error()      << std::endl; | 
 |   * // update b, and solve again | 
 |   * x = solver.solve(b); | 
 |   * \endcode | 
 |   * | 
 |   * By default the iterations start with x=0 as an initial guess of the solution. | 
 |   * One can control the start using the solveWithGuess() method. | 
 |   *  | 
 |   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner | 
 |   */ | 
 | template< typename _MatrixType, typename _Preconditioner> | 
 | class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > | 
 | { | 
 |   typedef IterativeSolverBase<GMRES> Base; | 
 |   using Base::mp_matrix; | 
 |   using Base::m_error; | 
 |   using Base::m_iterations; | 
 |   using Base::m_info; | 
 |   using Base::m_isInitialized; | 
 |  | 
 | private: | 
 |   Index m_restart; | 
 |  | 
 | public: | 
 |   using Base::_solve_impl; | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef _Preconditioner Preconditioner; | 
 |  | 
 | public: | 
 |  | 
 |   /** Default constructor. */ | 
 |   GMRES() : Base(), m_restart(30) {} | 
 |  | 
 |   /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
 |     * | 
 |     * This constructor is a shortcut for the default constructor followed | 
 |     * by a call to compute(). | 
 |     * | 
 |     * \warning this class stores a reference to the matrix A as well as some | 
 |     * precomputed values that depend on it. Therefore, if \a A is changed | 
 |     * this class becomes invalid. Call compute() to update it with the new | 
 |     * matrix A, or modify a copy of A. | 
 |     */ | 
 |   GMRES(const MatrixType& A) : Base(A), m_restart(30) {} | 
 |  | 
 |   ~GMRES() {} | 
 |  | 
 |   /** Get the number of iterations after that a restart is performed. | 
 |     */ | 
 |   Index get_restart() { return m_restart; } | 
 |  | 
 |   /** Set the number of iterations after that a restart is performed. | 
 |     *  \param restart   number of iterations for a restarti, default is 30. | 
 |     */ | 
 |   void set_restart(const Index restart) { m_restart=restart; } | 
 |  | 
 |   /** \internal */ | 
 |   template<typename Rhs,typename Dest> | 
 |   void _solve_with_guess_impl(const Rhs& b, Dest& x) const | 
 |   { | 
 |     bool failed = false; | 
 |     for(Index j=0; j<b.cols(); ++j) | 
 |     { | 
 |       m_iterations = Base::maxIterations(); | 
 |       m_error = Base::m_tolerance; | 
 |  | 
 |       typename Dest::ColXpr xj(x,j); | 
 |       if(!internal::gmres(mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error)) | 
 |         failed = true; | 
 |     } | 
 |     m_info = failed ? NumericalIssue | 
 |           : m_error <= Base::m_tolerance ? Success | 
 |           : NoConvergence; | 
 |     m_isInitialized = true; | 
 |   } | 
 |  | 
 |   /** \internal */ | 
 |   template<typename Rhs,typename Dest> | 
 |   void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const | 
 |   { | 
 |     x = b; | 
 |     if(x.squaredNorm() == 0) return; // Check Zero right hand side | 
 |     _solve_with_guess_impl(b,x.derived()); | 
 |   } | 
 |  | 
 | protected: | 
 |  | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_GMRES_H |