| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_INCOMPLETE_CHOlESKY_H | 
 | #define EIGEN_INCOMPLETE_CHOlESKY_H | 
 | #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"  | 
 | #include <Eigen/OrderingMethods> | 
 | #include <list> | 
 |  | 
 | namespace Eigen {   | 
 | /**  | 
 |  * \brief Modified Incomplete Cholesky with dual threshold | 
 |  *  | 
 |  * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with | 
 |  *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999 | 
 |  *  | 
 |  * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric  | 
 |  *                     matrix. It is advised to give  a row-oriented sparse matrix  | 
 |  * \tparam _UpLo The triangular part of the matrix to reference.  | 
 |  * \tparam _OrderingType  | 
 |  */ | 
 |  | 
 | template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> > | 
 | class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base; | 
 |     using Base::m_isInitialized; | 
 |   public: | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar;  | 
 |     typedef _OrderingType OrderingType; | 
 |     typedef typename OrderingType::PermutationType PermutationType; | 
 |     typedef typename PermutationType::StorageIndex StorageIndex;  | 
 |     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType; | 
 |     typedef FactorType MatrixType; | 
 |     typedef Matrix<Scalar,Dynamic,1> VectorSx; | 
 |     typedef Matrix<RealScalar,Dynamic,1> VectorRx; | 
 |     typedef Matrix<StorageIndex,Dynamic, 1> VectorIx; | 
 |     typedef std::vector<std::list<StorageIndex> > VectorList;  | 
 |     enum { UpLo = _UpLo }; | 
 |   public: | 
 |     IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {} | 
 |      | 
 |     template<typename MatrixType> | 
 |     IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false) | 
 |     { | 
 |       compute(matrix); | 
 |     } | 
 |      | 
 |     Index rows() const { return m_L.rows(); } | 
 |      | 
 |     Index cols() const { return m_L.cols(); } | 
 |      | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was succesful, | 
 |       *          \c NumericalIssue if the matrix appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |      | 
 |     /**  | 
 |      * \brief Set the initial shift parameter | 
 |      */ | 
 |     void setInitialShift(RealScalar shift) { m_initialShift = shift; } | 
 |      | 
 |     /** | 
 |     * \brief Computes the fill reducing permutation vector.  | 
 |     */ | 
 |     template<typename MatrixType> | 
 |     void analyzePattern(const MatrixType& mat) | 
 |     { | 
 |       OrderingType ord;  | 
 |       PermutationType pinv; | 
 |       ord(mat.template selfadjointView<UpLo>(), pinv);  | 
 |       if(pinv.size()>0) m_perm = pinv.inverse(); | 
 |       else              m_perm.resize(0); | 
 |       m_analysisIsOk = true;  | 
 |     } | 
 |      | 
 |     template<typename MatrixType> | 
 |     void factorize(const MatrixType& amat); | 
 |      | 
 |     template<typename MatrixType> | 
 |     void compute(const MatrixType& matrix) | 
 |     { | 
 |       analyzePattern(matrix);  | 
 |       factorize(matrix); | 
 |     } | 
 |      | 
 |     template<typename Rhs, typename Dest> | 
 |     void _solve_impl(const Rhs& b, Dest& x) const | 
 |     { | 
 |       eigen_assert(m_factorizationIsOk && "factorize() should be called first"); | 
 |       if (m_perm.rows() == b.rows())  x = m_perm * b; | 
 |       else                            x = b; | 
 |       x = m_scale.asDiagonal() * x; | 
 |       x = m_L.template triangularView<Lower>().solve(x); | 
 |       x = m_L.adjoint().template triangularView<Upper>().solve(x); | 
 |       x = m_scale.asDiagonal() * x; | 
 |       if (m_perm.rows() == b.rows()) | 
 |         x = m_perm.inverse() * x; | 
 |        | 
 |     } | 
 |  | 
 |   protected: | 
 |     FactorType m_L;              // The lower part stored in CSC | 
 |     VectorRx m_scale;            // The vector for scaling the matrix  | 
 |     RealScalar m_initialShift;   // The initial shift parameter | 
 |     bool m_analysisIsOk;  | 
 |     bool m_factorizationIsOk;  | 
 |     ComputationInfo m_info; | 
 |     PermutationType m_perm;  | 
 |      | 
 |   private: | 
 |     inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);  | 
 | };  | 
 |  | 
 | template<typename Scalar, int _UpLo, typename OrderingType> | 
 | template<typename _MatrixType> | 
 | void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) | 
 | { | 
 |   using std::sqrt; | 
 |   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");  | 
 |      | 
 |   // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added | 
 |    | 
 |   m_L.resize(mat.rows(), mat.cols()); | 
 |    | 
 |   // Apply the fill-reducing permutation computed in analyzePattern() | 
 |   if (m_perm.rows() == mat.rows() ) // To detect the null permutation | 
 |   { | 
 |     // The temporary is needed to make sure that the diagonal entry is properly sorted | 
 |     FactorType tmp(mat.rows(), mat.cols()); | 
 |     tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); | 
 |     m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>(); | 
 |   } | 
 |   else | 
 |   { | 
 |     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); | 
 |   } | 
 |    | 
 |   Index n = m_L.cols();  | 
 |   Index nnz = m_L.nonZeros(); | 
 |   Map<VectorSx> vals(m_L.valuePtr(), nnz);         //values | 
 |   Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices | 
 |   Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row | 
 |   VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization | 
 |   VectorList listCol(n);  // listCol(j) is a linked list of columns to update column j | 
 |   VectorSx col_vals(n);   // Store a  nonzero values in each column | 
 |   VectorIx col_irow(n);   // Row indices of nonzero elements in each column | 
 |   VectorIx col_pattern(n); | 
 |   col_pattern.fill(-1); | 
 |   StorageIndex col_nnz; | 
 |    | 
 |    | 
 |   // Computes the scaling factors  | 
 |   m_scale.resize(n); | 
 |   m_scale.setZero(); | 
 |   for (Index j = 0; j < n; j++) | 
 |     for (Index k = colPtr[j]; k < colPtr[j+1]; k++) | 
 |     { | 
 |       m_scale(j) += numext::abs2(vals(k)); | 
 |       if(rowIdx[k]!=j) | 
 |         m_scale(rowIdx[k]) += numext::abs2(vals(k)); | 
 |     } | 
 |    | 
 |   m_scale = m_scale.cwiseSqrt().cwiseSqrt(); | 
 |    | 
 |   // Scale and compute the shift for the matrix  | 
 |   RealScalar mindiag = NumTraits<RealScalar>::highest(); | 
 |   for (Index j = 0; j < n; j++) | 
 |   { | 
 |     for (Index k = colPtr[j]; k < colPtr[j+1]; k++) | 
 |       vals[k] /= (m_scale(j)*m_scale(rowIdx[k])); | 
 |     eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored"); | 
 |     mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); | 
 |   } | 
 |    | 
 |   RealScalar shift = 0; | 
 |   if(mindiag <= RealScalar(0.)) | 
 |     shift = m_initialShift - mindiag; | 
 |  | 
 |   // Apply the shift to the diagonal elements of the matrix | 
 |   for (Index j = 0; j < n; j++) | 
 |     vals[colPtr[j]] += shift; | 
 |    | 
 |   // jki version of the Cholesky factorization  | 
 |   for (Index j=0; j < n; ++j) | 
 |   {   | 
 |     // Left-looking factorization of the j-th column | 
 |     // First, load the j-th column into col_vals  | 
 |     Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored | 
 |     col_nnz = 0; | 
 |     for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++) | 
 |     { | 
 |       StorageIndex l = rowIdx[i]; | 
 |       col_vals(col_nnz) = vals[i]; | 
 |       col_irow(col_nnz) = l; | 
 |       col_pattern(l) = col_nnz; | 
 |       col_nnz++; | 
 |     } | 
 |     { | 
 |       typename std::list<StorageIndex>::iterator k;  | 
 |       // Browse all previous columns that will update column j | 
 |       for(k = listCol[j].begin(); k != listCol[j].end(); k++)  | 
 |       { | 
 |         Index jk = firstElt(*k); // First element to use in the column  | 
 |         eigen_internal_assert(rowIdx[jk]==j); | 
 |         Scalar v_j_jk = numext::conj(vals[jk]); | 
 |          | 
 |         jk += 1;  | 
 |         for (Index i = jk; i < colPtr[*k+1]; i++) | 
 |         { | 
 |           StorageIndex l = rowIdx[i]; | 
 |           if(col_pattern[l]<0) | 
 |           { | 
 |             col_vals(col_nnz) = vals[i] * v_j_jk; | 
 |             col_irow[col_nnz] = l; | 
 |             col_pattern(l) = col_nnz; | 
 |             col_nnz++; | 
 |           } | 
 |           else | 
 |             col_vals(col_pattern[l]) -= vals[i] * v_j_jk; | 
 |         } | 
 |         updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); | 
 |       } | 
 |     } | 
 |      | 
 |     // Scale the current column | 
 |     if(numext::real(diag) <= 0)  | 
 |     { | 
 |       std::cerr << "\nNegative diagonal during Incomplete factorization at position " << j << " (value = " << diag << ")\n"; | 
 |       m_info = NumericalIssue;  | 
 |       return;  | 
 |     } | 
 |      | 
 |     RealScalar rdiag = sqrt(numext::real(diag)); | 
 |     vals[colPtr[j]] = rdiag; | 
 |     for (Index k = 0; k<col_nnz; ++k) | 
 |     { | 
 |       Index i = col_irow[k]; | 
 |       //Scale | 
 |       col_vals(k) /= rdiag; | 
 |       //Update the remaining diagonals with col_vals | 
 |       vals[colPtr[i]] -= numext::abs2(col_vals(k)); | 
 |     } | 
 |     // Select the largest p elements | 
 |     // p is the original number of elements in the column (without the diagonal) | 
 |     Index p = colPtr[j+1] - colPtr[j] - 1 ;  | 
 |     Ref<VectorSx> cvals = col_vals.head(col_nnz); | 
 |     Ref<VectorIx> cirow = col_irow.head(col_nnz); | 
 |     internal::QuickSplit(cvals,cirow, p);  | 
 |     // Insert the largest p elements in the matrix | 
 |     Index cpt = 0;  | 
 |     for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++) | 
 |     { | 
 |       vals[i] = col_vals(cpt);  | 
 |       rowIdx[i] = col_irow(cpt); | 
 |       // restore col_pattern: | 
 |       col_pattern(col_irow(cpt)) = -1; | 
 |       cpt++;  | 
 |     } | 
 |     // Get the first smallest row index and put it after the diagonal element | 
 |     Index jk = colPtr(j)+1; | 
 |     updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);  | 
 |   } | 
 |   m_factorizationIsOk = true;  | 
 |   m_isInitialized = true; | 
 |   m_info = Success;  | 
 | } | 
 |  | 
 | template<typename Scalar, int _UpLo, typename OrderingType> | 
 | inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol) | 
 | { | 
 |   if (jk < colPtr(col+1) ) | 
 |   { | 
 |     Index p = colPtr(col+1) - jk; | 
 |     Index minpos;  | 
 |     rowIdx.segment(jk,p).minCoeff(&minpos); | 
 |     minpos += jk; | 
 |     if (rowIdx(minpos) != rowIdx(jk)) | 
 |     { | 
 |       //Swap | 
 |       std::swap(rowIdx(jk),rowIdx(minpos)); | 
 |       std::swap(vals(jk),vals(minpos)); | 
 |     } | 
 |     firstElt(col) = internal::convert_index<StorageIndex,Index>(jk); | 
 |     listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col)); | 
 |   } | 
 | } | 
 |  | 
 | } // end namespace Eigen  | 
 |  | 
 | #endif |