|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPLINE_H | 
|  | #define EIGEN_SPLINE_H | 
|  |  | 
|  | #include "SplineFwd.h" | 
|  |  | 
|  | namespace Eigen | 
|  | { | 
|  | /** | 
|  | * \ingroup Splines_Module | 
|  | * \class Spline | 
|  | * \brief A class representing multi-dimensional spline curves. | 
|  | * | 
|  | * The class represents B-splines with non-uniform knot vectors. Each control | 
|  | * point of the B-spline is associated with a basis function | 
|  | * \f{align*} | 
|  | *   C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i | 
|  | * \f} | 
|  | * | 
|  | * \tparam _Scalar The underlying data type (typically float or double) | 
|  | * \tparam _Dim The curve dimension (e.g. 2 or 3) | 
|  | * \tparam _Degree Per default set to Dynamic; could be set to the actual desired | 
|  | *                degree for optimization purposes (would result in stack allocation | 
|  | *                of several temporary variables). | 
|  | **/ | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | class Spline | 
|  | { | 
|  | public: | 
|  | typedef _Scalar Scalar; /*!< The spline curve's scalar type. */ | 
|  | enum { Dimension = _Dim /*!< The spline curve's dimension. */ }; | 
|  | enum { Degree = _Degree /*!< The spline curve's degree. */ }; | 
|  |  | 
|  | /** \brief The point type the spline is representing. */ | 
|  | typedef typename SplineTraits<Spline>::PointType PointType; | 
|  |  | 
|  | /** \brief The data type used to store knot vectors. */ | 
|  | typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType; | 
|  |  | 
|  | /** \brief The data type used to store parameter vectors. */ | 
|  | typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType; | 
|  |  | 
|  | /** \brief The data type used to store non-zero basis functions. */ | 
|  | typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType; | 
|  |  | 
|  | /** \brief The data type used to store the values of the basis function derivatives. */ | 
|  | typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType; | 
|  |  | 
|  | /** \brief The data type representing the spline's control points. */ | 
|  | typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType; | 
|  |  | 
|  | /** | 
|  | * \brief Creates a (constant) zero spline. | 
|  | * For Splines with dynamic degree, the resulting degree will be 0. | 
|  | **/ | 
|  | Spline() | 
|  | : m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2)) | 
|  | , m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1))) | 
|  | { | 
|  | // in theory this code can go to the initializer list but it will get pretty | 
|  | // much unreadable ... | 
|  | enum { MinDegree = (Degree==Dynamic ? 0 : Degree) }; | 
|  | m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero(); | 
|  | m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Creates a spline from a knot vector and control points. | 
|  | * \param knots The spline's knot vector. | 
|  | * \param ctrls The spline's control point vector. | 
|  | **/ | 
|  | template <typename OtherVectorType, typename OtherArrayType> | 
|  | Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {} | 
|  |  | 
|  | /** | 
|  | * \brief Copy constructor for splines. | 
|  | * \param spline The input spline. | 
|  | **/ | 
|  | template <int OtherDegree> | 
|  | Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) : | 
|  | m_knots(spline.knots()), m_ctrls(spline.ctrls()) {} | 
|  |  | 
|  | /** | 
|  | * \brief Returns the knots of the underlying spline. | 
|  | **/ | 
|  | const KnotVectorType& knots() const { return m_knots; } | 
|  |  | 
|  | /** | 
|  | * \brief Returns the knots of the underlying spline. | 
|  | **/ | 
|  | const ControlPointVectorType& ctrls() const { return m_ctrls; } | 
|  |  | 
|  | /** | 
|  | * \brief Returns the spline value at a given site \f$u\f$. | 
|  | * | 
|  | * The function returns | 
|  | * \f{align*} | 
|  | *   C(u) & = \sum_{i=0}^{n}N_{i,p}P_i | 
|  | * \f} | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated. | 
|  | * \return The spline value at the given location \f$u\f$. | 
|  | **/ | 
|  | PointType operator()(Scalar u) const; | 
|  |  | 
|  | /** | 
|  | * \brief Evaluation of spline derivatives of up-to given order. | 
|  | * | 
|  | * The function returns | 
|  | * \f{align*} | 
|  | *   \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i | 
|  | * \f} | 
|  | * for i ranging between 0 and order. | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated. | 
|  | * \param order The order up to which the derivatives are computed. | 
|  | **/ | 
|  | typename SplineTraits<Spline>::DerivativeType | 
|  | derivatives(Scalar u, DenseIndex order) const; | 
|  |  | 
|  | /** | 
|  | * \copydoc Spline::derivatives | 
|  | * Using the template version of this function is more efficieent since | 
|  | * temporary objects are allocated on the stack whenever this is possible. | 
|  | **/ | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits<Spline,DerivativeOrder>::DerivativeType | 
|  | derivatives(Scalar u, DenseIndex order = DerivativeOrder) const; | 
|  |  | 
|  | /** | 
|  | * \brief Computes the non-zero basis functions at the given site. | 
|  | * | 
|  | * Splines have local support and a point from their image is defined | 
|  | * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the | 
|  | * spline degree. | 
|  | * | 
|  | * This function computes the \f$p+1\f$ non-zero basis function values | 
|  | * for a given parameter value \f$u\f$. It returns | 
|  | * \f{align*}{ | 
|  | *   N_{i,p}(u), \hdots, N_{i+p+1,p}(u) | 
|  | * \f} | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions | 
|  | *          are computed. | 
|  | **/ | 
|  | typename SplineTraits<Spline>::BasisVectorType | 
|  | basisFunctions(Scalar u) const; | 
|  |  | 
|  | /** | 
|  | * \brief Computes the non-zero spline basis function derivatives up to given order. | 
|  | * | 
|  | * The function computes | 
|  | * \f{align*}{ | 
|  | *   \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u) | 
|  | * \f} | 
|  | * with i ranging from 0 up to the specified order. | 
|  | * | 
|  | * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function | 
|  | *          derivatives are computed. | 
|  | * \param order The order up to which the basis function derivatives are computes. | 
|  | **/ | 
|  | typename SplineTraits<Spline>::BasisDerivativeType | 
|  | basisFunctionDerivatives(Scalar u, DenseIndex order) const; | 
|  |  | 
|  | /** | 
|  | * \copydoc Spline::basisFunctionDerivatives | 
|  | * Using the template version of this function is more efficieent since | 
|  | * temporary objects are allocated on the stack whenever this is possible. | 
|  | **/ | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType | 
|  | basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const; | 
|  |  | 
|  | /** | 
|  | * \brief Returns the spline degree. | 
|  | **/ | 
|  | DenseIndex degree() const; | 
|  |  | 
|  | /** | 
|  | * \brief Returns the span within the knot vector in which u is falling. | 
|  | * \param u The site for which the span is determined. | 
|  | **/ | 
|  | DenseIndex span(Scalar u) const; | 
|  |  | 
|  | /** | 
|  | * \brief Computes the spang within the provided knot vector in which u is falling. | 
|  | **/ | 
|  | static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots); | 
|  |  | 
|  | /** | 
|  | * \brief Returns the spline's non-zero basis functions. | 
|  | * | 
|  | * The function computes and returns | 
|  | * \f{align*}{ | 
|  | *   N_{i,p}(u), \hdots, N_{i+p+1,p}(u) | 
|  | * \f} | 
|  | * | 
|  | * \param u The site at which the basis functions are computed. | 
|  | * \param degree The degree of the underlying spline. | 
|  | * \param knots The underlying spline's knot vector. | 
|  | **/ | 
|  | static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots); | 
|  |  | 
|  | /** | 
|  | * \copydoc Spline::basisFunctionDerivatives | 
|  | * \param degree The degree of the underlying spline | 
|  | * \param knots The underlying spline's knot vector. | 
|  | **/ | 
|  | static BasisDerivativeType BasisFunctionDerivatives( | 
|  | const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots); | 
|  |  | 
|  | private: | 
|  | KnotVectorType m_knots; /*!< Knot vector. */ | 
|  | ControlPointVectorType  m_ctrls; /*!< Control points. */ | 
|  |  | 
|  | template <typename DerivativeType> | 
|  | static void BasisFunctionDerivativesImpl( | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::Scalar u, | 
|  | const DenseIndex order, | 
|  | const DenseIndex p, | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U, | 
|  | DerivativeType& N_); | 
|  | }; | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | DenseIndex Spline<_Scalar, _Dim, _Degree>::Span( | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u, | 
|  | DenseIndex degree, | 
|  | const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots) | 
|  | { | 
|  | // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68) | 
|  | if (u <= knots(0)) return degree; | 
|  | const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u); | 
|  | return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 ); | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType | 
|  | Spline<_Scalar, _Dim, _Degree>::BasisFunctions( | 
|  | typename Spline<_Scalar, _Dim, _Degree>::Scalar u, | 
|  | DenseIndex degree, | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots) | 
|  | { | 
|  | typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType; | 
|  |  | 
|  | const DenseIndex p = degree; | 
|  | const DenseIndex i = Spline::Span(u, degree, knots); | 
|  |  | 
|  | const KnotVectorType& U = knots; | 
|  |  | 
|  | BasisVectorType left(p+1); left(0) = Scalar(0); | 
|  | BasisVectorType right(p+1); right(0) = Scalar(0); | 
|  |  | 
|  | VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse(); | 
|  | VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u; | 
|  |  | 
|  | BasisVectorType N(1,p+1); | 
|  | N(0) = Scalar(1); | 
|  | for (DenseIndex j=1; j<=p; ++j) | 
|  | { | 
|  | Scalar saved = Scalar(0); | 
|  | for (DenseIndex r=0; r<j; r++) | 
|  | { | 
|  | const Scalar tmp = N(r)/(right(r+1)+left(j-r)); | 
|  | N[r] = saved + right(r+1)*tmp; | 
|  | saved = left(j-r)*tmp; | 
|  | } | 
|  | N(j) = saved; | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const | 
|  | { | 
|  | if (_Degree == Dynamic) | 
|  | return m_knots.size() - m_ctrls.cols() - 1; | 
|  | else | 
|  | return _Degree; | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const | 
|  | { | 
|  | return Spline::Span(u, degree(), knots()); | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const | 
|  | { | 
|  | enum { Order = SplineTraits<Spline>::OrderAtCompileTime }; | 
|  |  | 
|  | const DenseIndex span = this->span(u); | 
|  | const DenseIndex p = degree(); | 
|  | const BasisVectorType basis_funcs = basisFunctions(u); | 
|  |  | 
|  | const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs); | 
|  | const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1); | 
|  | return (ctrl_weights * ctrl_pts).rowwise().sum(); | 
|  | } | 
|  |  | 
|  | /* --------------------------------------------------------------------------------------------- */ | 
|  |  | 
|  | template <typename SplineType, typename DerivativeType> | 
|  | void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der) | 
|  | { | 
|  | enum { Dimension = SplineTraits<SplineType>::Dimension }; | 
|  | enum { Order = SplineTraits<SplineType>::OrderAtCompileTime }; | 
|  | enum { DerivativeOrder = DerivativeType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType; | 
|  | typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType; | 
|  | typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr; | 
|  |  | 
|  | const DenseIndex p = spline.degree(); | 
|  | const DenseIndex span = spline.span(u); | 
|  |  | 
|  | const DenseIndex n = (std::min)(p, order); | 
|  |  | 
|  | der.resize(Dimension,n+1); | 
|  |  | 
|  | // Retrieve the basis function derivatives up to the desired order... | 
|  | const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1); | 
|  |  | 
|  | // ... and perform the linear combinations of the control points. | 
|  | for (DenseIndex der_order=0; der_order<n+1; ++der_order) | 
|  | { | 
|  | const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) ); | 
|  | const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1); | 
|  | der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType | 
|  | Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const | 
|  | { | 
|  | typename SplineTraits< Spline >::DerivativeType res; | 
|  | derivativesImpl(*this, u, order, res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType | 
|  | Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const | 
|  | { | 
|  | typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res; | 
|  | derivativesImpl(*this, u, order, res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType | 
|  | Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const | 
|  | { | 
|  | return Spline::BasisFunctions(u, degree(), knots()); | 
|  | } | 
|  |  | 
|  | /* --------------------------------------------------------------------------------------------- */ | 
|  |  | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | template <typename DerivativeType> | 
|  | void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl( | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::Scalar u, | 
|  | const DenseIndex order, | 
|  | const DenseIndex p, | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U, | 
|  | DerivativeType& N_) | 
|  | { | 
|  | typedef Spline<_Scalar, _Dim, _Degree> SplineType; | 
|  | enum { Order = SplineTraits<SplineType>::OrderAtCompileTime }; | 
|  |  | 
|  | typedef typename SplineTraits<SplineType>::Scalar Scalar; | 
|  | typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType; | 
|  |  | 
|  | const DenseIndex span = SplineType::Span(u, p, U); | 
|  |  | 
|  | const DenseIndex n = (std::min)(p, order); | 
|  |  | 
|  | N_.resize(n+1, p+1); | 
|  |  | 
|  | BasisVectorType left = BasisVectorType::Zero(p+1); | 
|  | BasisVectorType right = BasisVectorType::Zero(p+1); | 
|  |  | 
|  | Matrix<Scalar,Order,Order> ndu(p+1,p+1); | 
|  |  | 
|  | double saved, temp; | 
|  |  | 
|  | ndu(0,0) = 1.0; | 
|  |  | 
|  | DenseIndex j; | 
|  | for (j=1; j<=p; ++j) | 
|  | { | 
|  | left[j] = u-U[span+1-j]; | 
|  | right[j] = U[span+j]-u; | 
|  | saved = 0.0; | 
|  |  | 
|  | for (DenseIndex r=0; r<j; ++r) | 
|  | { | 
|  | /* Lower triangle */ | 
|  | ndu(j,r) = right[r+1]+left[j-r]; | 
|  | temp = ndu(r,j-1)/ndu(j,r); | 
|  | /* Upper triangle */ | 
|  | ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp); | 
|  | saved = left[j-r] * temp; | 
|  | } | 
|  |  | 
|  | ndu(j,j) = static_cast<Scalar>(saved); | 
|  | } | 
|  |  | 
|  | for (j = p; j>=0; --j) | 
|  | N_(0,j) = ndu(j,p); | 
|  |  | 
|  | // Compute the derivatives | 
|  | DerivativeType a(n+1,p+1); | 
|  | DenseIndex r=0; | 
|  | for (; r<=p; ++r) | 
|  | { | 
|  | DenseIndex s1,s2; | 
|  | s1 = 0; s2 = 1; // alternate rows in array a | 
|  | a(0,0) = 1.0; | 
|  |  | 
|  | // Compute the k-th derivative | 
|  | for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k) | 
|  | { | 
|  | double d = 0.0; | 
|  | DenseIndex rk,pk,j1,j2; | 
|  | rk = r-k; pk = p-k; | 
|  |  | 
|  | if (r>=k) | 
|  | { | 
|  | a(s2,0) = a(s1,0)/ndu(pk+1,rk); | 
|  | d = a(s2,0)*ndu(rk,pk); | 
|  | } | 
|  |  | 
|  | if (rk>=-1) j1 = 1; | 
|  | else        j1 = -rk; | 
|  |  | 
|  | if (r-1 <= pk) j2 = k-1; | 
|  | else           j2 = p-r; | 
|  |  | 
|  | for (j=j1; j<=j2; ++j) | 
|  | { | 
|  | a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j); | 
|  | d += a(s2,j)*ndu(rk+j,pk); | 
|  | } | 
|  |  | 
|  | if (r<=pk) | 
|  | { | 
|  | a(s2,k) = -a(s1,k-1)/ndu(pk+1,r); | 
|  | d += a(s2,k)*ndu(r,pk); | 
|  | } | 
|  |  | 
|  | N_(k,r) = static_cast<Scalar>(d); | 
|  | j = s1; s1 = s2; s2 = j; // Switch rows | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Multiply through by the correct factors */ | 
|  | /* (Eq. [2.9])                             */ | 
|  | r = p; | 
|  | for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k) | 
|  | { | 
|  | for (j=p; j>=0; --j) N_(k,j) *= r; | 
|  | r *= p-k; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType | 
|  | Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const | 
|  | { | 
|  | typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der; | 
|  | BasisFunctionDerivativesImpl(u, order, degree(), knots(), der); | 
|  | return der; | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | template <int DerivativeOrder> | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType | 
|  | Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const | 
|  | { | 
|  | typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der; | 
|  | BasisFunctionDerivativesImpl(u, order, degree(), knots(), der); | 
|  | return der; | 
|  | } | 
|  |  | 
|  | template <typename _Scalar, int _Dim, int _Degree> | 
|  | typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType | 
|  | Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives( | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::Scalar u, | 
|  | const DenseIndex order, | 
|  | const DenseIndex degree, | 
|  | const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots) | 
|  | { | 
|  | typename SplineTraits<Spline>::BasisDerivativeType der; | 
|  | BasisFunctionDerivativesImpl(u, order, degree, knots, der); | 
|  | return der; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_SPLINE_H |