| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // Function void Eigen::AlignedBox::transform(const Transform& transform) |
| // is provided under the following license agreement: |
| // |
| // Software License Agreement (BSD License) |
| // |
| // Copyright (c) 2011-2014, Willow Garage, Inc. |
| // Copyright (c) 2014-2015, Open Source Robotics Foundation |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Open Source Robotics Foundation nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef EIGEN_ALIGNEDBOX_H |
| #define EIGEN_ALIGNEDBOX_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * |
| * \class AlignedBox |
| * |
| * \brief An axis aligned box |
| * |
| * \tparam Scalar_ the type of the scalar coefficients |
| * \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic. |
| * |
| * This class represents an axis aligned box as a pair of the minimal and maximal corners. |
| * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using |
| * isEmpty(). \sa alignedboxtypedefs |
| */ |
| template <typename Scalar_, int AmbientDim_> |
| class AlignedBox { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, AmbientDim_) |
| enum { AmbientDimAtCompileTime = AmbientDim_ }; |
| typedef Scalar_ Scalar; |
| typedef NumTraits<Scalar> ScalarTraits; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| typedef typename ScalarTraits::Real RealScalar; |
| typedef typename ScalarTraits::NonInteger NonInteger; |
| typedef Matrix<Scalar, AmbientDimAtCompileTime, 1> VectorType; |
| typedef CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> VectorTypeSum; |
| |
| /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ |
| enum CornerType { |
| /** 1D names @{ */ |
| Min = 0, |
| Max = 1, |
| /** @} */ |
| |
| /** Identifier for 2D corner @{ */ |
| BottomLeft = 0, |
| BottomRight = 1, |
| TopLeft = 2, |
| TopRight = 3, |
| /** @} */ |
| |
| /** Identifier for 3D corner @{ */ |
| BottomLeftFloor = 0, |
| BottomRightFloor = 1, |
| TopLeftFloor = 2, |
| TopRightFloor = 3, |
| BottomLeftCeil = 4, |
| BottomRightCeil = 5, |
| TopLeftCeil = 6, |
| TopRightCeil = 7 |
| /** @} */ |
| }; |
| |
| /** Default constructor initializing a null box. */ |
| EIGEN_DEVICE_FUNC inline AlignedBox() { |
| if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime != Dynamic)) setEmpty(); |
| } |
| |
| /** Constructs a null box with \a _dim the dimension of the ambient space. */ |
| EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) { setEmpty(); } |
| |
| /** Constructs a box with extremities \a _min and \a _max. |
| * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. |
| */ |
| template <typename OtherVectorType1, typename OtherVectorType2> |
| EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) |
| : m_min(_min), m_max(_max) {} |
| |
| /** Constructs a box containing a single point \a p. */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min) {} |
| |
| EIGEN_DEVICE_FUNC ~AlignedBox() {} |
| |
| /** \returns the dimension in which the box holds */ |
| EIGEN_DEVICE_FUNC inline Index dim() const { |
| return AmbientDimAtCompileTime == Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); |
| } |
| |
| /** \deprecated use isEmpty() */ |
| EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); } |
| |
| /** \deprecated use setEmpty() */ |
| EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); } |
| |
| /** \returns true if the box is empty. |
| * \sa setEmpty */ |
| EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } |
| |
| /** Makes \c *this an empty box. |
| * \sa isEmpty */ |
| EIGEN_DEVICE_FUNC inline void setEmpty() { |
| m_min.setConstant(ScalarTraits::highest()); |
| m_max.setConstant(ScalarTraits::lowest()); |
| } |
| |
| /** \returns the minimal corner */ |
| EIGEN_DEVICE_FUNC inline const VectorType&(min)() const { return m_min; } |
| /** \returns a non const reference to the minimal corner */ |
| EIGEN_DEVICE_FUNC inline VectorType&(min)() { return m_min; } |
| /** \returns the maximal corner */ |
| EIGEN_DEVICE_FUNC inline const VectorType&(max)() const { return m_max; } |
| /** \returns a non const reference to the maximal corner */ |
| EIGEN_DEVICE_FUNC inline VectorType&(max)() { return m_max; } |
| |
| /** \returns the center of the box */ |
| EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient) |
| center() const { |
| return (m_min + m_max) / RealScalar(2); |
| } |
| |
| /** \returns the lengths of the sides of the bounding box. |
| * Note that this function does not get the same |
| * result for integral or floating scalar types: see |
| */ |
| EIGEN_DEVICE_FUNC inline const CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const VectorType, |
| const VectorType> |
| sizes() const { |
| return m_max - m_min; |
| } |
| |
| /** \returns the volume of the bounding box */ |
| EIGEN_DEVICE_FUNC inline Scalar volume() const { return isEmpty() ? Scalar(0) : sizes().prod(); } |
| |
| /** \returns an expression for the bounding box diagonal vector |
| * if the length of the diagonal is needed: diagonal().norm() |
| * will provide it. |
| */ |
| EIGEN_DEVICE_FUNC inline CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const VectorType, |
| const VectorType> |
| diagonal() const { |
| return sizes(); |
| } |
| |
| /** \returns the vertex of the bounding box at the corner defined by |
| * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. |
| * For 1D bounding boxes corners are named by 2 enum constants: |
| * BottomLeft and BottomRight. |
| * For 2D bounding boxes, corners are named by 4 enum constants: |
| * BottomLeft, BottomRight, TopLeft, TopRight. |
| * For 3D bounding boxes, the following names are added: |
| * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. |
| */ |
| EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const { |
| EIGEN_STATIC_ASSERT(AmbientDim_ <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); |
| |
| VectorType res; |
| |
| Index mult = 1; |
| for (Index d = 0; d < dim(); ++d) { |
| if (mult & corner) |
| res[d] = m_max[d]; |
| else |
| res[d] = m_min[d]; |
| mult *= 2; |
| } |
| return res; |
| } |
| |
| /** \returns a random point inside the bounding box sampled with |
| * a uniform distribution */ |
| EIGEN_DEVICE_FUNC inline VectorType sample() const { |
| VectorType r(dim()); |
| for (Index d = 0; d < dim(); ++d) { |
| if (!ScalarTraits::IsInteger) { |
| r[d] = m_min[d] + (m_max[d] - m_min[d]) * internal::random<Scalar>(Scalar(0), Scalar(1)); |
| } else |
| r[d] = internal::random(m_min[d], m_max[d]); |
| } |
| return r; |
| } |
| |
| /** \returns true if the point \a p is inside the box \c *this. */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase<Derived>& p) const { |
| typename internal::nested_eval<Derived, 2>::type p_n(p.derived()); |
| return (m_min.array() <= p_n.array()).all() && (p_n.array() <= m_max.array()).all(); |
| } |
| |
| /** \returns true if the box \a b is entirely inside the box \c *this. */ |
| EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const { |
| return (m_min.array() <= (b.min)().array()).all() && ((b.max)().array() <= m_max.array()).all(); |
| } |
| |
| /** \returns true if the box \a b is intersecting the box \c *this. |
| * \sa intersection, clamp */ |
| EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const { |
| return (m_min.array() <= (b.max)().array()).all() && ((b.min)().array() <= m_max.array()).all(); |
| } |
| |
| /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. |
| * \sa extend(const AlignedBox&) */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase<Derived>& p) { |
| typename internal::nested_eval<Derived, 2>::type p_n(p.derived()); |
| m_min = m_min.cwiseMin(p_n); |
| m_max = m_max.cwiseMax(p_n); |
| return *this; |
| } |
| |
| /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. |
| * \sa merged, extend(const MatrixBase&) */ |
| EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b) { |
| m_min = m_min.cwiseMin(b.m_min); |
| m_max = m_max.cwiseMax(b.m_max); |
| return *this; |
| } |
| |
| /** Clamps \c *this by the box \a b and returns a reference to \c *this. |
| * \note If the boxes don't intersect, the resulting box is empty. |
| * \sa intersection(), intersects() */ |
| EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b) { |
| m_min = m_min.cwiseMax(b.m_min); |
| m_max = m_max.cwiseMin(b.m_max); |
| return *this; |
| } |
| |
| /** Returns an AlignedBox that is the intersection of \a b and \c *this |
| * \note If the boxes don't intersect, the resulting box is empty. |
| * \sa intersects(), clamp, contains() */ |
| EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const { |
| return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); |
| } |
| |
| /** Returns an AlignedBox that is the union of \a b and \c *this. |
| * \note Merging with an empty box may result in a box bigger than \c *this. |
| * \sa extend(const AlignedBox&) */ |
| EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const { |
| return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); |
| } |
| |
| /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase<Derived>& a_t) { |
| const typename internal::nested_eval<Derived, 2>::type t(a_t.derived()); |
| m_min += t; |
| m_max += t; |
| return *this; |
| } |
| |
| /** \returns a copy of \c *this translated by the vector \a t. */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase<Derived>& a_t) const { |
| AlignedBox result(m_min, m_max); |
| result.translate(a_t); |
| return result; |
| } |
| |
| /** \returns the squared distance between the point \a p and the box \c *this, |
| * and zero if \a p is inside the box. |
| * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const; |
| |
| /** \returns the squared distance between the boxes \a b and \c *this, |
| * and zero if the boxes intersect. |
| * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) |
| */ |
| EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const; |
| |
| /** \returns the distance between the point \a p and the box \c *this, |
| * and zero if \a p is inside the box. |
| * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const { |
| EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); |
| } |
| |
| /** \returns the distance between the boxes \a b and \c *this, |
| * and zero if the boxes intersect. |
| * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) |
| */ |
| EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const { |
| EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); |
| } |
| |
| /** |
| * Specialization of transform for pure translation. |
| */ |
| template <int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline void transform( |
| const typename Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>::TranslationType& translation) { |
| this->translate(translation); |
| } |
| |
| /** |
| * Transforms this box by \a transform and recomputes it to |
| * still be an axis-aligned box. |
| * |
| * \note This method is provided under BSD license (see the top of this file). |
| */ |
| template <int Mode, int Options> |
| EIGEN_DEVICE_FUNC inline void transform(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) { |
| // Only Affine and Isometry transforms are currently supported. |
| EIGEN_STATIC_ASSERT(Mode == Affine || Mode == AffineCompact || Mode == Isometry, |
| THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS); |
| |
| // Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV<AABB, Box>(...) |
| // https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292 |
| // |
| // Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/ |
| |
| // two times rotated extent |
| const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes(); |
| // two times new center |
| const VectorType rotated_center_2 = |
| transform.linear() * (this->m_max + this->m_min) + Scalar(2) * transform.translation(); |
| |
| this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2); |
| this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2); |
| } |
| |
| /** |
| * \returns a copy of \c *this transformed by \a transform and recomputed to |
| * still be an axis-aligned box. |
| */ |
| template <int Mode, int Options> |
| EIGEN_DEVICE_FUNC AlignedBox |
| transformed(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) const { |
| AlignedBox result(m_min, m_max); |
| result.transform(transform); |
| return result; |
| } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline |
| typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType, AmbientDimAtCompileTime> >::type |
| cast() const { |
| return typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType, AmbientDimAtCompileTime> >::type( |
| *this); |
| } |
| |
| /** Copy constructor with scalar type conversion */ |
| template <typename OtherScalarType> |
| EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox<OtherScalarType, AmbientDimAtCompileTime>& other) { |
| m_min = (other.min)().template cast<Scalar>(); |
| m_max = (other.max)().template cast<Scalar>(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, |
| const RealScalar& prec = ScalarTraits::dummy_precision()) const { |
| return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); |
| } |
| |
| protected: |
| VectorType m_min, m_max; |
| }; |
| |
| template <typename Scalar, int AmbientDim> |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar, AmbientDim>::squaredExteriorDistance( |
| const MatrixBase<Derived>& a_p) const { |
| typename internal::nested_eval<Derived, 2 * AmbientDim>::type p(a_p.derived()); |
| Scalar dist2(0); |
| Scalar aux; |
| for (Index k = 0; k < dim(); ++k) { |
| if (m_min[k] > p[k]) { |
| aux = m_min[k] - p[k]; |
| dist2 += aux * aux; |
| } else if (p[k] > m_max[k]) { |
| aux = p[k] - m_max[k]; |
| dist2 += aux * aux; |
| } |
| } |
| return dist2; |
| } |
| |
| template <typename Scalar, int AmbientDim> |
| EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar, AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const { |
| Scalar dist2(0); |
| Scalar aux; |
| for (Index k = 0; k < dim(); ++k) { |
| if (m_min[k] > b.m_max[k]) { |
| aux = m_min[k] - b.m_max[k]; |
| dist2 += aux * aux; |
| } else if (b.m_min[k] > m_max[k]) { |
| aux = b.m_min[k] - m_max[k]; |
| dist2 += aux * aux; |
| } |
| } |
| return dist2; |
| } |
| |
| /** \defgroup alignedboxtypedefs Global aligned box typedefs |
| * |
| * \ingroup Geometry_Module |
| * |
| * Eigen defines several typedef shortcuts for most common aligned box types. |
| * |
| * The general patterns are the following: |
| * |
| * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, |
| * and where \c Type can be \c i for integer, \c f for float, \c d for double. |
| * |
| * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size |
| * aligned box of floats. |
| * |
| * \sa class AlignedBox |
| */ |
| |
| #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| /** \ingroup alignedboxtypedefs */ \ |
| typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) |
| |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) |
| EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) |
| |
| #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES |
| #undef EIGEN_MAKE_TYPEDEFS |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ALIGNEDBOX_H |