blob: e97a8f295319236e70616dbadea12ea4b91b36d6 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// Function void Eigen::AlignedBox::transform(const Transform& transform)
// is provided under the following license agreement:
//
// Software License Agreement (BSD License)
//
// Copyright (c) 2011-2014, Willow Garage, Inc.
// Copyright (c) 2014-2015, Open Source Robotics Foundation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Open Source Robotics Foundation nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#ifndef EIGEN_ALIGNEDBOX_H
#define EIGEN_ALIGNEDBOX_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
*
* \class AlignedBox
*
* \brief An axis aligned box
*
* \tparam Scalar_ the type of the scalar coefficients
* \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic.
*
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
* \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using
* isEmpty(). \sa alignedboxtypedefs
*/
template <typename Scalar_, int AmbientDim_>
class AlignedBox {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, AmbientDim_)
enum { AmbientDimAtCompileTime = AmbientDim_ };
typedef Scalar_ Scalar;
typedef NumTraits<Scalar> ScalarTraits;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename ScalarTraits::Real RealScalar;
typedef typename ScalarTraits::NonInteger NonInteger;
typedef Matrix<Scalar, AmbientDimAtCompileTime, 1> VectorType;
typedef CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> VectorTypeSum;
/** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
enum CornerType {
/** 1D names @{ */
Min = 0,
Max = 1,
/** @} */
/** Identifier for 2D corner @{ */
BottomLeft = 0,
BottomRight = 1,
TopLeft = 2,
TopRight = 3,
/** @} */
/** Identifier for 3D corner @{ */
BottomLeftFloor = 0,
BottomRightFloor = 1,
TopLeftFloor = 2,
TopRightFloor = 3,
BottomLeftCeil = 4,
BottomRightCeil = 5,
TopLeftCeil = 6,
TopRightCeil = 7
/** @} */
};
/** Default constructor initializing a null box. */
EIGEN_DEVICE_FUNC inline AlignedBox() {
if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime != Dynamic)) setEmpty();
}
/** Constructs a null box with \a _dim the dimension of the ambient space. */
EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) { setEmpty(); }
/** Constructs a box with extremities \a _min and \a _max.
* \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty.
*/
template <typename OtherVectorType1, typename OtherVectorType2>
EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max)
: m_min(_min), m_max(_max) {}
/** Constructs a box containing a single point \a p. */
template <typename Derived>
EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min) {}
EIGEN_DEVICE_FUNC ~AlignedBox() {}
/** \returns the dimension in which the box holds */
EIGEN_DEVICE_FUNC inline Index dim() const {
return AmbientDimAtCompileTime == Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime);
}
/** \deprecated use isEmpty() */
EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); }
/** \deprecated use setEmpty() */
EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); }
/** \returns true if the box is empty.
* \sa setEmpty */
EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
/** Makes \c *this an empty box.
* \sa isEmpty */
EIGEN_DEVICE_FUNC inline void setEmpty() {
m_min.setConstant(ScalarTraits::highest());
m_max.setConstant(ScalarTraits::lowest());
}
/** \returns the minimal corner */
EIGEN_DEVICE_FUNC inline const VectorType&(min)() const { return m_min; }
/** \returns a non const reference to the minimal corner */
EIGEN_DEVICE_FUNC inline VectorType&(min)() { return m_min; }
/** \returns the maximal corner */
EIGEN_DEVICE_FUNC inline const VectorType&(max)() const { return m_max; }
/** \returns a non const reference to the maximal corner */
EIGEN_DEVICE_FUNC inline VectorType&(max)() { return m_max; }
/** \returns the center of the box */
EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient)
center() const {
return (m_min + m_max) / RealScalar(2);
}
/** \returns the lengths of the sides of the bounding box.
* Note that this function does not get the same
* result for integral or floating scalar types: see
*/
EIGEN_DEVICE_FUNC inline const CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const VectorType,
const VectorType>
sizes() const {
return m_max - m_min;
}
/** \returns the volume of the bounding box */
EIGEN_DEVICE_FUNC inline Scalar volume() const { return isEmpty() ? Scalar(0) : sizes().prod(); }
/** \returns an expression for the bounding box diagonal vector
* if the length of the diagonal is needed: diagonal().norm()
* will provide it.
*/
EIGEN_DEVICE_FUNC inline CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const VectorType,
const VectorType>
diagonal() const {
return sizes();
}
/** \returns the vertex of the bounding box at the corner defined by
* the corner-id corner. It works only for a 1D, 2D or 3D bounding box.
* For 1D bounding boxes corners are named by 2 enum constants:
* BottomLeft and BottomRight.
* For 2D bounding boxes, corners are named by 4 enum constants:
* BottomLeft, BottomRight, TopLeft, TopRight.
* For 3D bounding boxes, the following names are added:
* BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil.
*/
EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const {
EIGEN_STATIC_ASSERT(AmbientDim_ <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE);
VectorType res;
Index mult = 1;
for (Index d = 0; d < dim(); ++d) {
if (mult & corner)
res[d] = m_max[d];
else
res[d] = m_min[d];
mult *= 2;
}
return res;
}
/** \returns a random point inside the bounding box sampled with
* a uniform distribution */
EIGEN_DEVICE_FUNC inline VectorType sample() const {
VectorType r(dim());
for (Index d = 0; d < dim(); ++d) {
if (!ScalarTraits::IsInteger) {
r[d] = m_min[d] + (m_max[d] - m_min[d]) * internal::random<Scalar>(Scalar(0), Scalar(1));
} else
r[d] = internal::random(m_min[d], m_max[d]);
}
return r;
}
/** \returns true if the point \a p is inside the box \c *this. */
template <typename Derived>
EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase<Derived>& p) const {
typename internal::nested_eval<Derived, 2>::type p_n(p.derived());
return (m_min.array() <= p_n.array()).all() && (p_n.array() <= m_max.array()).all();
}
/** \returns true if the box \a b is entirely inside the box \c *this. */
EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const {
return (m_min.array() <= (b.min)().array()).all() && ((b.max)().array() <= m_max.array()).all();
}
/** \returns true if the box \a b is intersecting the box \c *this.
* \sa intersection, clamp */
EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const {
return (m_min.array() <= (b.max)().array()).all() && ((b.min)().array() <= m_max.array()).all();
}
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this.
* \sa extend(const AlignedBox&) */
template <typename Derived>
EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase<Derived>& p) {
typename internal::nested_eval<Derived, 2>::type p_n(p.derived());
m_min = m_min.cwiseMin(p_n);
m_max = m_max.cwiseMax(p_n);
return *this;
}
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this.
* \sa merged, extend(const MatrixBase&) */
EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b) {
m_min = m_min.cwiseMin(b.m_min);
m_max = m_max.cwiseMax(b.m_max);
return *this;
}
/** Clamps \c *this by the box \a b and returns a reference to \c *this.
* \note If the boxes don't intersect, the resulting box is empty.
* \sa intersection(), intersects() */
EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b) {
m_min = m_min.cwiseMax(b.m_min);
m_max = m_max.cwiseMin(b.m_max);
return *this;
}
/** Returns an AlignedBox that is the intersection of \a b and \c *this
* \note If the boxes don't intersect, the resulting box is empty.
* \sa intersects(), clamp, contains() */
EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const {
return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max));
}
/** Returns an AlignedBox that is the union of \a b and \c *this.
* \note Merging with an empty box may result in a box bigger than \c *this.
* \sa extend(const AlignedBox&) */
EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const {
return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max));
}
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
template <typename Derived>
EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase<Derived>& a_t) {
const typename internal::nested_eval<Derived, 2>::type t(a_t.derived());
m_min += t;
m_max += t;
return *this;
}
/** \returns a copy of \c *this translated by the vector \a t. */
template <typename Derived>
EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase<Derived>& a_t) const {
AlignedBox result(m_min, m_max);
result.translate(a_t);
return result;
}
/** \returns the squared distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
/** \returns the squared distance between the boxes \a b and \c *this,
* and zero if the boxes intersect.
* \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&)
*/
EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
/** \returns the distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&)
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const {
EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p)));
}
/** \returns the distance between the boxes \a b and \c *this,
* and zero if the boxes intersect.
* \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&)
*/
EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const {
EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b)));
}
/**
* Specialization of transform for pure translation.
*/
template <int Mode, int Options>
EIGEN_DEVICE_FUNC inline void transform(
const typename Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>::TranslationType& translation) {
this->translate(translation);
}
/**
* Transforms this box by \a transform and recomputes it to
* still be an axis-aligned box.
*
* \note This method is provided under BSD license (see the top of this file).
*/
template <int Mode, int Options>
EIGEN_DEVICE_FUNC inline void transform(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) {
// Only Affine and Isometry transforms are currently supported.
EIGEN_STATIC_ASSERT(Mode == Affine || Mode == AffineCompact || Mode == Isometry,
THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS);
// Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV<AABB, Box>(...)
// https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292
//
// Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/
// two times rotated extent
const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes();
// two times new center
const VectorType rotated_center_2 =
transform.linear() * (this->m_max + this->m_min) + Scalar(2) * transform.translation();
this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2);
this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2);
}
/**
* \returns a copy of \c *this transformed by \a transform and recomputed to
* still be an axis-aligned box.
*/
template <int Mode, int Options>
EIGEN_DEVICE_FUNC AlignedBox
transformed(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) const {
AlignedBox result(m_min, m_max);
result.transform(transform);
return result;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template <typename NewScalarType>
EIGEN_DEVICE_FUNC inline
typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType, AmbientDimAtCompileTime> >::type
cast() const {
return typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType, AmbientDimAtCompileTime> >::type(
*this);
}
/** Copy constructor with scalar type conversion */
template <typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox<OtherScalarType, AmbientDimAtCompileTime>& other) {
m_min = (other.min)().template cast<Scalar>();
m_max = (other.max)().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other,
const RealScalar& prec = ScalarTraits::dummy_precision()) const {
return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec);
}
protected:
VectorType m_min, m_max;
};
template <typename Scalar, int AmbientDim>
template <typename Derived>
EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar, AmbientDim>::squaredExteriorDistance(
const MatrixBase<Derived>& a_p) const {
typename internal::nested_eval<Derived, 2 * AmbientDim>::type p(a_p.derived());
Scalar dist2(0);
Scalar aux;
for (Index k = 0; k < dim(); ++k) {
if (m_min[k] > p[k]) {
aux = m_min[k] - p[k];
dist2 += aux * aux;
} else if (p[k] > m_max[k]) {
aux = p[k] - m_max[k];
dist2 += aux * aux;
}
}
return dist2;
}
template <typename Scalar, int AmbientDim>
EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar, AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const {
Scalar dist2(0);
Scalar aux;
for (Index k = 0; k < dim(); ++k) {
if (m_min[k] > b.m_max[k]) {
aux = m_min[k] - b.m_max[k];
dist2 += aux * aux;
} else if (b.m_min[k] > m_max[k]) {
aux = b.m_min[k] - m_max[k];
dist2 += aux * aux;
}
}
return dist2;
}
/** \defgroup alignedboxtypedefs Global aligned box typedefs
*
* \ingroup Geometry_Module
*
* Eigen defines several typedef shortcuts for most common aligned box types.
*
* The general patterns are the following:
*
* \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double.
*
* For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size
* aligned box of floats.
*
* \sa class AlignedBox
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup alignedboxtypedefs */ \
typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
} // end namespace Eigen
#endif // EIGEN_ALIGNEDBOX_H