| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H |
| #define EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| // EventCount allows to wait for arbitrary predicates in non-blocking |
| // algorithms. Think of condition variable, but wait predicate does not need to |
| // be protected by a mutex. Usage: |
| // Waiting thread does: |
| // |
| // if (predicate) |
| // return act(); |
| // EventCount::Waiter& w = waiters[my_index]; |
| // ec.Prewait(&w); |
| // if (predicate) { |
| // ec.CancelWait(&w); |
| // return act(); |
| // } |
| // ec.CommitWait(&w); |
| // |
| // Notifying thread does: |
| // |
| // predicate = true; |
| // ec.Notify(true); |
| // |
| // Notify is cheap if there are no waiting threads. Prewait/CommitWait are not |
| // cheap, but they are executed only if the preceding predicate check has |
| // failed. |
| // |
| // Algorithm outline: |
| // There are two main variables: predicate (managed by user) and state_. |
| // Operation closely resembles Dekker mutual algorithm: |
| // https://en.wikipedia.org/wiki/Dekker%27s_algorithm |
| // Waiting thread sets state_ then checks predicate, Notifying thread sets |
| // predicate then checks state_. Due to seq_cst fences in between these |
| // operations it is guaranteed than either waiter will see predicate change |
| // and won't block, or notifying thread will see state_ change and will unblock |
| // the waiter, or both. But it can't happen that both threads don't see each |
| // other changes, which would lead to deadlock. |
| class EventCount { |
| public: |
| class Waiter; |
| |
| EventCount(MaxSizeVector<Waiter>& waiters) : state_(kStackMask), waiters_(waiters) { |
| eigen_plain_assert(waiters.size() < (1 << kWaiterBits) - 1); |
| } |
| |
| ~EventCount() { |
| // Ensure there are no waiters. |
| eigen_plain_assert(state_.load() == kStackMask); |
| } |
| |
| // Prewait prepares for waiting. |
| // After calling Prewait, the thread must re-check the wait predicate |
| // and then call either CancelWait or CommitWait. |
| void Prewait() { |
| uint64_t state = state_.load(std::memory_order_relaxed); |
| for (;;) { |
| CheckState(state); |
| uint64_t newstate = state + kWaiterInc; |
| CheckState(newstate); |
| if (state_.compare_exchange_weak(state, newstate, std::memory_order_seq_cst)) return; |
| } |
| } |
| |
| // CommitWait commits waiting after Prewait. |
| void CommitWait(Waiter* w) { |
| eigen_plain_assert((w->epoch & ~kEpochMask) == 0); |
| w->state = Waiter::kNotSignaled; |
| const uint64_t me = (w - &waiters_[0]) | w->epoch; |
| uint64_t state = state_.load(std::memory_order_seq_cst); |
| for (;;) { |
| CheckState(state, true); |
| uint64_t newstate; |
| if ((state & kSignalMask) != 0) { |
| // Consume the signal and return immediately. |
| newstate = state - kWaiterInc - kSignalInc; |
| } else { |
| // Remove this thread from pre-wait counter and add to the waiter stack. |
| newstate = ((state & kWaiterMask) - kWaiterInc) | me; |
| w->next.store(state & (kStackMask | kEpochMask), std::memory_order_relaxed); |
| } |
| CheckState(newstate); |
| if (state_.compare_exchange_weak(state, newstate, std::memory_order_acq_rel)) { |
| if ((state & kSignalMask) == 0) { |
| w->epoch += kEpochInc; |
| Park(w); |
| } |
| return; |
| } |
| } |
| } |
| |
| // CancelWait cancels effects of the previous Prewait call. |
| void CancelWait() { |
| uint64_t state = state_.load(std::memory_order_relaxed); |
| for (;;) { |
| CheckState(state, true); |
| uint64_t newstate = state - kWaiterInc; |
| // We don't know if the thread was also notified or not, |
| // so we should not consume a signal unconditionally. |
| // Only if number of waiters is equal to number of signals, |
| // we know that the thread was notified and we must take away the signal. |
| if (((state & kWaiterMask) >> kWaiterShift) == ((state & kSignalMask) >> kSignalShift)) newstate -= kSignalInc; |
| CheckState(newstate); |
| if (state_.compare_exchange_weak(state, newstate, std::memory_order_acq_rel)) return; |
| } |
| } |
| |
| // Notify wakes one or all waiting threads. |
| // Must be called after changing the associated wait predicate. |
| void Notify(bool notifyAll) { |
| std::atomic_thread_fence(std::memory_order_seq_cst); |
| uint64_t state = state_.load(std::memory_order_acquire); |
| for (;;) { |
| CheckState(state); |
| const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift; |
| const uint64_t signals = (state & kSignalMask) >> kSignalShift; |
| // Easy case: no waiters. |
| if ((state & kStackMask) == kStackMask && waiters == signals) return; |
| uint64_t newstate; |
| if (notifyAll) { |
| // Empty wait stack and set signal to number of pre-wait threads. |
| newstate = (state & kWaiterMask) | (waiters << kSignalShift) | kStackMask; |
| } else if (signals < waiters) { |
| // There is a thread in pre-wait state, unblock it. |
| newstate = state + kSignalInc; |
| } else { |
| // Pop a waiter from list and unpark it. |
| Waiter* w = &waiters_[state & kStackMask]; |
| uint64_t next = w->next.load(std::memory_order_relaxed); |
| newstate = (state & (kWaiterMask | kSignalMask)) | next; |
| } |
| CheckState(newstate); |
| if (state_.compare_exchange_weak(state, newstate, std::memory_order_acq_rel)) { |
| if (!notifyAll && (signals < waiters)) return; // unblocked pre-wait thread |
| if ((state & kStackMask) == kStackMask) return; |
| Waiter* w = &waiters_[state & kStackMask]; |
| if (!notifyAll) w->next.store(kStackMask, std::memory_order_relaxed); |
| Unpark(w); |
| return; |
| } |
| } |
| } |
| |
| class Waiter { |
| friend class EventCount; |
| // Align to 128 byte boundary to prevent false sharing with other Waiter |
| // objects in the same vector. |
| EIGEN_ALIGN_TO_BOUNDARY(128) std::atomic<uint64_t> next; |
| EIGEN_MUTEX mu; |
| EIGEN_CONDVAR cv; |
| uint64_t epoch = 0; |
| unsigned state = kNotSignaled; |
| enum { |
| kNotSignaled, |
| kWaiting, |
| kSignaled, |
| }; |
| }; |
| |
| private: |
| // State_ layout: |
| // - low kWaiterBits is a stack of waiters committed wait |
| // (indexes in waiters_ array are used as stack elements, |
| // kStackMask means empty stack). |
| // - next kWaiterBits is count of waiters in prewait state. |
| // - next kWaiterBits is count of pending signals. |
| // - remaining bits are ABA counter for the stack. |
| // (stored in Waiter node and incremented on push). |
| static const uint64_t kWaiterBits = 14; |
| static const uint64_t kStackMask = (1ull << kWaiterBits) - 1; |
| static const uint64_t kWaiterShift = kWaiterBits; |
| static const uint64_t kWaiterMask = ((1ull << kWaiterBits) - 1) << kWaiterShift; |
| static const uint64_t kWaiterInc = 1ull << kWaiterShift; |
| static const uint64_t kSignalShift = 2 * kWaiterBits; |
| static const uint64_t kSignalMask = ((1ull << kWaiterBits) - 1) << kSignalShift; |
| static const uint64_t kSignalInc = 1ull << kSignalShift; |
| static const uint64_t kEpochShift = 3 * kWaiterBits; |
| static const uint64_t kEpochBits = 64 - kEpochShift; |
| static const uint64_t kEpochMask = ((1ull << kEpochBits) - 1) << kEpochShift; |
| static const uint64_t kEpochInc = 1ull << kEpochShift; |
| std::atomic<uint64_t> state_; |
| MaxSizeVector<Waiter>& waiters_; |
| |
| static void CheckState(uint64_t state, bool waiter = false) { |
| static_assert(kEpochBits >= 20, "not enough bits to prevent ABA problem"); |
| const uint64_t waiters = (state & kWaiterMask) >> kWaiterShift; |
| const uint64_t signals = (state & kSignalMask) >> kSignalShift; |
| eigen_plain_assert(waiters >= signals); |
| eigen_plain_assert(waiters < (1 << kWaiterBits) - 1); |
| eigen_plain_assert(!waiter || waiters > 0); |
| (void)waiters; |
| (void)signals; |
| } |
| |
| void Park(Waiter* w) { |
| EIGEN_MUTEX_LOCK lock(w->mu); |
| while (w->state != Waiter::kSignaled) { |
| w->state = Waiter::kWaiting; |
| w->cv.wait(lock); |
| } |
| } |
| |
| void Unpark(Waiter* w) { |
| for (Waiter* next; w; w = next) { |
| uint64_t wnext = w->next.load(std::memory_order_relaxed) & kStackMask; |
| next = wnext == kStackMask ? nullptr : &waiters_[internal::convert_index<size_t>(wnext)]; |
| unsigned state; |
| { |
| EIGEN_MUTEX_LOCK lock(w->mu); |
| state = w->state; |
| w->state = Waiter::kSignaled; |
| } |
| // Avoid notifying if it wasn't waiting. |
| if (state == Waiter::kWaiting) w->cv.notify_one(); |
| } |
| } |
| |
| EventCount(const EventCount&) = delete; |
| void operator=(const EventCount&) = delete; |
| }; |
| |
| } // namespace Eigen |
| |
| #endif // EIGEN_CXX11_THREADPOOL_EVENTCOUNT_H |