| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATHFUNCTIONSIMPL_H |
| #define EIGEN_MATHFUNCTIONSIMPL_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal \returns the hyperbolic tan of \a a (coeff-wise) |
| Doesn't do anything fancy, just a 13/6-degree rational interpolant which |
| is accurate up to a couple of ulp in the range [-9, 9], outside of which |
| the tanh(x) = +/-1. |
| |
| This implementation works on both scalars and packets. |
| */ |
| template<typename T> |
| EIGEN_DONT_INLINE T generic_fast_tanh_float(const T& a_x) |
| { |
| // Clamp the inputs to the range [-9, 9] since anything outside |
| // this range is +/-1.0f in single-precision. |
| const T plus_9 = pset1<T>(9.f); |
| const T minus_9 = pset1<T>(-9.f); |
| const T x = pmax(minus_9, pmin(plus_9, a_x)); |
| |
| // The monomial coefficients of the numerator polynomial (odd). |
| const T alpha_1 = pset1<T>(4.89352455891786e-03f); |
| const T alpha_3 = pset1<T>(6.37261928875436e-04f); |
| const T alpha_5 = pset1<T>(1.48572235717979e-05f); |
| const T alpha_7 = pset1<T>(5.12229709037114e-08f); |
| const T alpha_9 = pset1<T>(-8.60467152213735e-11f); |
| const T alpha_11 = pset1<T>(2.00018790482477e-13f); |
| const T alpha_13 = pset1<T>(-2.76076847742355e-16f); |
| |
| // The monomial coefficients of the denominator polynomial (even). |
| const T beta_0 = pset1<T>(4.89352518554385e-03f); |
| const T beta_2 = pset1<T>(2.26843463243900e-03f); |
| const T beta_4 = pset1<T>(1.18534705686654e-04f); |
| const T beta_6 = pset1<T>(1.19825839466702e-06f); |
| |
| // Since the polynomials are odd/even, we need x^2. |
| const T x2 = pmul(x, x); |
| |
| // Evaluate the numerator polynomial p. |
| T p = pmadd(x2, alpha_13, alpha_11); |
| p = pmadd(x2, p, alpha_9); |
| p = pmadd(x2, p, alpha_7); |
| p = pmadd(x2, p, alpha_5); |
| p = pmadd(x2, p, alpha_3); |
| p = pmadd(x2, p, alpha_1); |
| p = pmul(x, p); |
| |
| // Evaluate the denominator polynomial p. |
| T q = pmadd(x2, beta_6, beta_4); |
| q = pmadd(x2, q, beta_2); |
| q = pmadd(x2, q, beta_0); |
| |
| // Divide the numerator by the denominator. |
| return pdiv(p, q); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATHFUNCTIONSIMPL_H |