| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 | #include <iostream> | 
 | #include <fstream> | 
 | #include <iomanip> | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/LevenbergMarquardt> | 
 |  | 
 | using namespace std; | 
 | using namespace Eigen; | 
 |  | 
 | template <typename Scalar> | 
 | struct sparseGaussianTest : SparseFunctor<Scalar, int> | 
 | { | 
 |   typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |   typedef SparseFunctor<Scalar,int> Base; | 
 |   typedef typename Base::JacobianType JacobianType; | 
 |   sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values) | 
 |   { } | 
 |    | 
 |   VectorType model(const VectorType& uv, VectorType& x) | 
 |   { | 
 |     VectorType y; //Change this to use expression template | 
 |     int m = Base::values();  | 
 |     int n = Base::inputs(); | 
 |     eigen_assert(uv.size()%2 == 0); | 
 |     eigen_assert(uv.size() == n); | 
 |     eigen_assert(x.size() == m); | 
 |     y.setZero(m); | 
 |     int half = n/2; | 
 |     VectorBlock<const VectorType> u(uv, 0, half); | 
 |     VectorBlock<const VectorType> v(uv, half, half); | 
 |     Scalar coeff; | 
 |     for (int j = 0; j < m; j++) | 
 |     { | 
 |       for (int i = 0; i < half; i++)  | 
 |       { | 
 |         coeff = (x(j)-i)/v(i); | 
 |         coeff *= coeff; | 
 |         if (coeff < 1. && coeff > 0.) | 
 |           y(j) += u(i)*std::pow((1-coeff), 2); | 
 |       } | 
 |     } | 
 |     return y; | 
 |   } | 
 |   void initPoints(VectorType& uv_ref, VectorType& x) | 
 |   { | 
 |     m_x = x; | 
 |     m_y = this->model(uv_ref,x); | 
 |   } | 
 |   int operator()(const VectorType& uv, VectorType& fvec) | 
 |   { | 
 |     int m = Base::values();  | 
 |     int n = Base::inputs(); | 
 |     eigen_assert(uv.size()%2 == 0); | 
 |     eigen_assert(uv.size() == n); | 
 |     int half = n/2; | 
 |     VectorBlock<const VectorType> u(uv, 0, half); | 
 |     VectorBlock<const VectorType> v(uv, half, half); | 
 |     fvec = m_y; | 
 |     Scalar coeff; | 
 |     for (int j = 0; j < m; j++) | 
 |     { | 
 |       for (int i = 0; i < half; i++) | 
 |       { | 
 |         coeff = (m_x(j)-i)/v(i); | 
 |         coeff *= coeff; | 
 |         if (coeff < 1. && coeff > 0.) | 
 |           fvec(j) -= u(i)*std::pow((1-coeff), 2); | 
 |       } | 
 |     } | 
 |     return 0; | 
 |   } | 
 |    | 
 |   int df(const VectorType& uv, JacobianType& fjac) | 
 |   { | 
 |     int m = Base::values();  | 
 |     int n = Base::inputs(); | 
 |     eigen_assert(n == uv.size()); | 
 |     eigen_assert(fjac.rows() == m); | 
 |     eigen_assert(fjac.cols() == n); | 
 |     int half = n/2; | 
 |     VectorBlock<const VectorType> u(uv, 0, half); | 
 |     VectorBlock<const VectorType> v(uv, half, half); | 
 |     Scalar coeff; | 
 |      | 
 |     //Derivatives with respect to u | 
 |     for (int col = 0; col < half; col++) | 
 |     { | 
 |       for (int row = 0; row < m; row++) | 
 |       { | 
 |         coeff = (m_x(row)-col)/v(col); | 
 |           coeff = coeff*coeff; | 
 |         if(coeff < 1. && coeff > 0.) | 
 |         { | 
 |           fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff); | 
 |         } | 
 |       } | 
 |     } | 
 |     //Derivatives with respect to v | 
 |     for (int col = 0; col < half; col++) | 
 |     { | 
 |       for (int row = 0; row < m; row++) | 
 |       { | 
 |         coeff = (m_x(row)-col)/v(col); | 
 |         coeff = coeff*coeff; | 
 |         if(coeff < 1. && coeff > 0.) | 
 |         { | 
 |           fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff); | 
 |         } | 
 |       } | 
 |     } | 
 |     return 0; | 
 |   } | 
 |    | 
 |   VectorType m_x, m_y; //Data points | 
 | }; | 
 |  | 
 |  | 
 | template<typename T> | 
 | void test_sparseLM_T() | 
 | { | 
 |   typedef Matrix<T,Dynamic,1> VectorType; | 
 |    | 
 |   int inputs = 10; | 
 |   int values = 2000; | 
 |   sparseGaussianTest<T> sparse_gaussian(inputs, values); | 
 |   VectorType uv(inputs),uv_ref(inputs); | 
 |   VectorType x(values); | 
 |   // Generate the reference solution  | 
 |   uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3; | 
 |   //Generate the reference data points | 
 |   x.setRandom(); | 
 |   x = 10*x; | 
 |   x.array() += 10; | 
 |   sparse_gaussian.initPoints(uv_ref, x); | 
 |    | 
 |    | 
 |   // Generate the initial parameters  | 
 |   VectorBlock<VectorType> u(uv, 0, inputs/2);  | 
 |   VectorBlock<VectorType> v(uv, inputs/2, inputs/2); | 
 |   v.setOnes(); | 
 |   //Generate u or Solve for u from v | 
 |   u.setOnes(); | 
 |    | 
 |   // Solve the optimization problem | 
 |   LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian); | 
 |   int info; | 
 | //   info = lm.minimize(uv); | 
 |    | 
 |   VERIFY_IS_EQUAL(info,1); | 
 |     // Do a step by step solution and save the residual  | 
 |   int maxiter = 200; | 
 |   int iter = 0; | 
 |   MatrixXd Err(values, maxiter); | 
 |   MatrixXd Mod(values, maxiter); | 
 |   LevenbergMarquardtSpace::Status status;  | 
 |   status = lm.minimizeInit(uv); | 
 |   if (status==LevenbergMarquardtSpace::ImproperInputParameters) | 
 |       return ; | 
 |  | 
 | } | 
 | EIGEN_DECLARE_TEST(sparseLM) | 
 | { | 
 |   CALL_SUBTEST_1(test_sparseLM_T<double>()); | 
 |    | 
 |   // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); | 
 | } |