blob: ed6b4ffead7488a977452bb719284f3a9948dd40 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector {
EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) {
typename internal::nested_eval<Derived, 2>::type nested(x);
typename internal::nested_eval<OtherDerived, 2>::type otherNested(y);
return (nested.matrix() - otherNested.matrix()).cwiseAbs2().sum() <=
prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template <typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true> {
EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&) {
return x.matrix() == y.matrix();
}
};
template <typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector {
EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) {
return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
}
};
template <typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true> {
EIGEN_DEVICE_FUNC static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&) {
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
template <typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector {
EIGEN_DEVICE_FUNC static bool run(const Derived& x, const typename Derived::RealScalar& y,
const typename Derived::RealScalar& prec) {
return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
}
};
template <typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true> {
EIGEN_DEVICE_FUNC static bool run(const Derived& x, const typename Derived::RealScalar&,
const typename Derived::RealScalar&) {
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
} // end namespace internal
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template <typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApprox(const DenseBase<OtherDerived>& other,
const RealScalar& prec) const {
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
*/
template <typename Derived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isMuchSmallerThan(const typename NumTraits<Scalar>::Real& other,
const RealScalar& prec) const {
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template <typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isMuchSmallerThan(const DenseBase<OtherDerived>& other,
const RealScalar& prec) const {
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
} // end namespace Eigen
#endif // EIGEN_FUZZY_H