| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Claire Maurice |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H |
| #define EIGEN_COMPLEX_EIGEN_SOLVER_H |
| |
| #include "./ComplexSchur.h" |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * |
| * \class ComplexEigenSolver |
| * |
| * \brief Computes eigenvalues and eigenvectors of general complex matrices |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are |
| * computing the eigendecomposition; this is expected to be an |
| * instantiation of the Matrix class template. |
| * |
| * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars |
| * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v |
| * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on |
| * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as |
| * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is |
| * almost always invertible, in which case we have \f$ A = V D V^{-1} |
| * \f$. This is called the eigendecomposition. |
| * |
| * The main function in this class is compute(), which computes the |
| * eigenvalues and eigenvectors of a given function. The |
| * documentation for that function contains an example showing the |
| * main features of the class. |
| * |
| * \sa class EigenSolver, class SelfAdjointEigenSolver |
| */ |
| template <typename MatrixType_> |
| class ComplexEigenSolver { |
| public: |
| /** \brief Synonym for the template parameter \p MatrixType_. */ |
| typedef MatrixType_ MatrixType; |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = internal::traits<MatrixType>::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| /** \brief Scalar type for matrices of type #MatrixType. */ |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| |
| /** \brief Complex scalar type for #MatrixType. |
| * |
| * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
| * \c float or \c double) and just \c Scalar if #Scalar is |
| * complex. |
| */ |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| /** \brief Type for vector of eigenvalues as returned by eigenvalues(). |
| * |
| * This is a column vector with entries of type #ComplexScalar. |
| * The length of the vector is the size of #MatrixType. |
| */ |
| typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & (~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType; |
| |
| /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). |
| * |
| * This is a square matrix with entries of type #ComplexScalar. |
| * The size is the same as the size of #MatrixType. |
| */ |
| typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, |
| MaxColsAtCompileTime> |
| EigenvectorType; |
| |
| /** \brief Default constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via compute(). |
| */ |
| ComplexEigenSolver() |
| : m_eivec(), m_eivalues(), m_schur(), m_isInitialized(false), m_eigenvectorsOk(false), m_matX() {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa ComplexEigenSolver() |
| */ |
| explicit ComplexEigenSolver(Index size) |
| : m_eivec(size, size), |
| m_eivalues(size), |
| m_schur(size), |
| m_isInitialized(false), |
| m_eigenvectorsOk(false), |
| m_matX(size, size) {} |
| |
| /** \brief Constructor; computes eigendecomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * |
| * This constructor calls compute() to compute the eigendecomposition. |
| */ |
| template <typename InputType> |
| explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) |
| : m_eivec(matrix.rows(), matrix.cols()), |
| m_eivalues(matrix.cols()), |
| m_schur(matrix.rows()), |
| m_isInitialized(false), |
| m_eigenvectorsOk(false), |
| m_matX(matrix.rows(), matrix.cols()) { |
| compute(matrix.derived(), computeEigenvectors); |
| } |
| |
| /** \brief Returns the eigenvectors of given matrix. |
| * |
| * \returns A const reference to the matrix whose columns are the eigenvectors. |
| * |
| * \pre Either the constructor |
| * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
| * function compute(const MatrixType& matrix, bool) has been called before |
| * to compute the eigendecomposition of a matrix, and |
| * \p computeEigenvectors was set to true (the default). |
| * |
| * This function returns a matrix whose columns are the eigenvectors. Column |
| * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k |
| * \f$ as returned by eigenvalues(). The eigenvectors are normalized to |
| * have (Euclidean) norm equal to one. The matrix returned by this |
| * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D |
| * V^{-1} \f$, if it exists. |
| * |
| * Example: \include ComplexEigenSolver_eigenvectors.cpp |
| * Output: \verbinclude ComplexEigenSolver_eigenvectors.out |
| */ |
| const EigenvectorType& eigenvectors() const { |
| eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
| return m_eivec; |
| } |
| |
| /** \brief Returns the eigenvalues of given matrix. |
| * |
| * \returns A const reference to the column vector containing the eigenvalues. |
| * |
| * \pre Either the constructor |
| * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
| * function compute(const MatrixType& matrix, bool) has been called before |
| * to compute the eigendecomposition of a matrix. |
| * |
| * This function returns a column vector containing the |
| * eigenvalues. Eigenvalues are repeated according to their |
| * algebraic multiplicity, so there are as many eigenvalues as |
| * rows in the matrix. The eigenvalues are not sorted in any particular |
| * order. |
| * |
| * Example: \include ComplexEigenSolver_eigenvalues.cpp |
| * Output: \verbinclude ComplexEigenSolver_eigenvalues.out |
| */ |
| const EigenvalueType& eigenvalues() const { |
| eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| return m_eivalues; |
| } |
| |
| /** \brief Computes eigendecomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * \returns Reference to \c *this |
| * |
| * This function computes the eigenvalues of the complex matrix \p matrix. |
| * The eigenvalues() function can be used to retrieve them. If |
| * \p computeEigenvectors is true, then the eigenvectors are also computed |
| * and can be retrieved by calling eigenvectors(). |
| * |
| * The matrix is first reduced to Schur form using the |
| * ComplexSchur class. The Schur decomposition is then used to |
| * compute the eigenvalues and eigenvectors. |
| * |
| * The cost of the computation is dominated by the cost of the |
| * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ |
| * is the size of the matrix. |
| * |
| * Example: \include ComplexEigenSolver_compute.cpp |
| * Output: \verbinclude ComplexEigenSolver_compute.out |
| */ |
| template <typename InputType> |
| ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, \c NoConvergence otherwise. |
| */ |
| ComputationInfo info() const { |
| eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| return m_schur.info(); |
| } |
| |
| /** \brief Sets the maximum number of iterations allowed. */ |
| ComplexEigenSolver& setMaxIterations(Index maxIters) { |
| m_schur.setMaxIterations(maxIters); |
| return *this; |
| } |
| |
| /** \brief Returns the maximum number of iterations. */ |
| Index getMaxIterations() { return m_schur.getMaxIterations(); } |
| |
| protected: |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| EigenvectorType m_eivec; |
| EigenvalueType m_eivalues; |
| ComplexSchur<MatrixType> m_schur; |
| bool m_isInitialized; |
| bool m_eigenvectorsOk; |
| EigenvectorType m_matX; |
| |
| private: |
| void doComputeEigenvectors(RealScalar matrixnorm); |
| void sortEigenvalues(bool computeEigenvectors); |
| }; |
| |
| template <typename MatrixType> |
| template <typename InputType> |
| ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, |
| bool computeEigenvectors) { |
| // this code is inspired from Jampack |
| eigen_assert(matrix.cols() == matrix.rows()); |
| |
| // Do a complex Schur decomposition, A = U T U^* |
| // The eigenvalues are on the diagonal of T. |
| m_schur.compute(matrix.derived(), computeEigenvectors); |
| |
| if (m_schur.info() == Success) { |
| m_eivalues = m_schur.matrixT().diagonal(); |
| if (computeEigenvectors) doComputeEigenvectors(m_schur.matrixT().norm()); |
| sortEigenvalues(computeEigenvectors); |
| } |
| |
| m_isInitialized = true; |
| m_eigenvectorsOk = computeEigenvectors; |
| return *this; |
| } |
| |
| template <typename MatrixType> |
| void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm) { |
| const Index n = m_eivalues.size(); |
| |
| matrixnorm = numext::maxi(matrixnorm, (std::numeric_limits<RealScalar>::min)()); |
| |
| // Compute X such that T = X D X^(-1), where D is the diagonal of T. |
| // The matrix X is unit triangular. |
| m_matX = EigenvectorType::Zero(n, n); |
| for (Index k = n - 1; k >= 0; k--) { |
| m_matX.coeffRef(k, k) = ComplexScalar(1.0, 0.0); |
| // Compute X(i,k) using the (i,k) entry of the equation X T = D X |
| for (Index i = k - 1; i >= 0; i--) { |
| m_matX.coeffRef(i, k) = -m_schur.matrixT().coeff(i, k); |
| if (k - i - 1 > 0) |
| m_matX.coeffRef(i, k) -= |
| (m_schur.matrixT().row(i).segment(i + 1, k - i - 1) * m_matX.col(k).segment(i + 1, k - i - 1)).value(); |
| ComplexScalar z = m_schur.matrixT().coeff(i, i) - m_schur.matrixT().coeff(k, k); |
| if (z == ComplexScalar(0)) { |
| // If the i-th and k-th eigenvalue are equal, then z equals 0. |
| // Use a small value instead, to prevent division by zero. |
| numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm; |
| } |
| m_matX.coeffRef(i, k) = m_matX.coeff(i, k) / z; |
| } |
| } |
| |
| // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) |
| m_eivec.noalias() = m_schur.matrixU() * m_matX; |
| // .. and normalize the eigenvectors |
| for (Index k = 0; k < n; k++) { |
| m_eivec.col(k).stableNormalize(); |
| } |
| } |
| |
| template <typename MatrixType> |
| void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors) { |
| const Index n = m_eivalues.size(); |
| for (Index i = 0; i < n; i++) { |
| Index k; |
| m_eivalues.cwiseAbs().tail(n - i).minCoeff(&k); |
| if (k != 0) { |
| k += i; |
| std::swap(m_eivalues[k], m_eivalues[i]); |
| if (computeEigenvectors) m_eivec.col(i).swap(m_eivec.col(k)); |
| } |
| } |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H |