| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_HOMOGENEOUS_H |
| #define EIGEN_HOMOGENEOUS_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Homogeneous |
| * |
| * \brief Expression of one (or a set of) homogeneous vector(s) |
| * |
| * \param MatrixType the type of the object in which we are making homogeneous |
| * |
| * This class represents an expression of one (or a set of) homogeneous vector(s). |
| * It is the return type of MatrixBase::homogeneous() and most of the time |
| * this is the only way it is used. |
| * |
| * \sa MatrixBase::homogeneous() |
| */ |
| |
| namespace internal { |
| |
| template <typename MatrixType, int Direction> |
| struct traits<Homogeneous<MatrixType, Direction> > : traits<MatrixType> { |
| typedef typename traits<MatrixType>::StorageKind StorageKind; |
| typedef typename ref_selector<MatrixType>::type MatrixTypeNested; |
| typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNested_; |
| enum { |
| RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, |
| ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, |
| RowsAtCompileTime = Direction == Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = Direction == Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = RowsAtCompileTime, |
| MaxColsAtCompileTime = ColsAtCompileTime, |
| TmpFlags = MatrixTypeNested_::Flags & HereditaryBits, |
| Flags = ColsAtCompileTime == 1 ? (TmpFlags & ~RowMajorBit) |
| : RowsAtCompileTime == 1 ? (TmpFlags | RowMajorBit) |
| : TmpFlags |
| }; |
| }; |
| |
| template <typename MatrixType, typename Lhs> |
| struct homogeneous_left_product_impl; |
| template <typename MatrixType, typename Rhs> |
| struct homogeneous_right_product_impl; |
| |
| } // end namespace internal |
| |
| template <typename MatrixType, int Direction_> |
| class Homogeneous : public MatrixBase<Homogeneous<MatrixType, Direction_> >, internal::no_assignment_operator { |
| public: |
| typedef MatrixType NestedExpression; |
| enum { Direction = Direction_ }; |
| |
| typedef MatrixBase<Homogeneous> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) |
| |
| EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { |
| return m_matrix.rows() + (int(Direction) == Vertical ? 1 : 0); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { |
| return m_matrix.cols() + (int(Direction) == Horizontal ? 1 : 0); |
| } |
| |
| EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } |
| |
| template <typename Rhs> |
| EIGEN_DEVICE_FUNC inline const Product<Homogeneous, Rhs> operator*(const MatrixBase<Rhs>& rhs) const { |
| eigen_assert(int(Direction) == Horizontal); |
| return Product<Homogeneous, Rhs>(*this, rhs.derived()); |
| } |
| |
| template <typename Lhs> |
| friend EIGEN_DEVICE_FUNC inline const Product<Lhs, Homogeneous> operator*(const MatrixBase<Lhs>& lhs, |
| const Homogeneous& rhs) { |
| eigen_assert(int(Direction) == Vertical); |
| return Product<Lhs, Homogeneous>(lhs.derived(), rhs); |
| } |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| friend EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar, Dim, Mode, Options>, Homogeneous> operator*( |
| const Transform<Scalar, Dim, Mode, Options>& lhs, const Homogeneous& rhs) { |
| eigen_assert(int(Direction) == Vertical); |
| return Product<Transform<Scalar, Dim, Mode, Options>, Homogeneous>(lhs, rhs); |
| } |
| |
| template <typename Func> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar, Scalar)>::type redux( |
| const Func& func) const { |
| return func(m_matrix.redux(func), Scalar(1)); |
| } |
| |
| protected: |
| typename MatrixType::Nested m_matrix; |
| }; |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as |
| * the last coefficient. |
| * |
| * This can be used to convert affine coordinates to homogeneous coordinates. |
| * |
| * \only_for_vectors |
| * |
| * Example: \include MatrixBase_homogeneous.cpp |
| * Output: \verbinclude MatrixBase_homogeneous.out |
| * |
| * \sa VectorwiseOp::homogeneous(), class Homogeneous |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType MatrixBase<Derived>::homogeneous() const { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); |
| return HomogeneousReturnType(derived()); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of |
| * the matrix. |
| * |
| * This can be used to convert affine coordinates to homogeneous coordinates. |
| * |
| * Example: \include VectorwiseOp_homogeneous.cpp |
| * Output: \verbinclude VectorwiseOp_homogeneous.out |
| * |
| * \sa MatrixBase::homogeneous(), class Homogeneous */ |
| template <typename ExpressionType, int Direction> |
| EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType, Direction> VectorwiseOp<ExpressionType, Direction>::homogeneous() |
| const { |
| return HomogeneousReturnType(_expression()); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \brief homogeneous normalization |
| * |
| * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. |
| * |
| * This can be used to convert homogeneous coordinates to affine coordinates. |
| * |
| * It is essentially a shortcut for: |
| * \code |
| this->head(this->size()-1)/this->coeff(this->size()-1); |
| \endcode |
| * |
| * Example: \include MatrixBase_hnormalized.cpp |
| * Output: \verbinclude MatrixBase_hnormalized.out |
| * |
| * \sa VectorwiseOp::hnormalized() */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType MatrixBase<Derived>::hnormalized() |
| const { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); |
| return ConstStartMinusOne(derived(), 0, 0, ColsAtCompileTime == 1 ? size() - 1 : 1, |
| ColsAtCompileTime == 1 ? 1 : size() - 1) / |
| coeff(size() - 1); |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \brief column or row-wise homogeneous normalization |
| * |
| * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last |
| * coefficient of each column (or row). |
| * |
| * This can be used to convert homogeneous coordinates to affine coordinates. |
| * |
| * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. |
| * |
| * Example: \include DirectionWise_hnormalized.cpp |
| * Output: \verbinclude DirectionWise_hnormalized.out |
| * |
| * \sa MatrixBase::hnormalized() */ |
| template <typename ExpressionType, int Direction> |
| EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType, Direction>::HNormalizedReturnType |
| VectorwiseOp<ExpressionType, Direction>::hnormalized() const { |
| return HNormalized_Block(_expression(), 0, 0, Direction == Vertical ? _expression().rows() - 1 : _expression().rows(), |
| Direction == Horizontal ? _expression().cols() - 1 : _expression().cols()) |
| .cwiseQuotient(Replicate < HNormalized_Factors, Direction == Vertical ? HNormalized_SizeMinusOne : 1, |
| Direction == Horizontal |
| ? HNormalized_SizeMinusOne |
| : 1 > (HNormalized_Factors(_expression(), Direction == Vertical ? _expression().rows() - 1 : 0, |
| Direction == Horizontal ? _expression().cols() - 1 : 0, |
| Direction == Vertical ? 1 : _expression().rows(), |
| Direction == Horizontal ? 1 : _expression().cols()), |
| Direction == Vertical ? _expression().rows() - 1 : 1, |
| Direction == Horizontal ? _expression().cols() - 1 : 1)); |
| } |
| |
| namespace internal { |
| |
| template <typename MatrixOrTransformType> |
| struct take_matrix_for_product { |
| typedef MatrixOrTransformType type; |
| EIGEN_DEVICE_FUNC static const type& run(const type& x) { return x; } |
| }; |
| |
| template <typename Scalar, int Dim, int Mode, int Options> |
| struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > { |
| typedef Transform<Scalar, Dim, Mode, Options> TransformType; |
| typedef std::add_const_t<typename TransformType::ConstAffinePart> type; |
| EIGEN_DEVICE_FUNC static type run(const TransformType& x) { return x.affine(); } |
| }; |
| |
| template <typename Scalar, int Dim, int Options> |
| struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > { |
| typedef Transform<Scalar, Dim, Projective, Options> TransformType; |
| typedef typename TransformType::MatrixType type; |
| EIGEN_DEVICE_FUNC static const type& run(const TransformType& x) { return x.matrix(); } |
| }; |
| |
| template <typename MatrixType, typename Lhs> |
| struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> > { |
| typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType; |
| typedef remove_all_t<MatrixType> MatrixTypeCleaned; |
| typedef remove_all_t<LhsMatrixType> LhsMatrixTypeCleaned; |
| typedef typename make_proper_matrix_type< |
| typename traits<MatrixTypeCleaned>::Scalar, LhsMatrixTypeCleaned::RowsAtCompileTime, |
| MatrixTypeCleaned::ColsAtCompileTime, MatrixTypeCleaned::PlainObject::Options, |
| LhsMatrixTypeCleaned::MaxRowsAtCompileTime, MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; |
| }; |
| |
| template <typename MatrixType, typename Lhs> |
| struct homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> |
| : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> > { |
| typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType; |
| typedef remove_all_t<LhsMatrixType> LhsMatrixTypeCleaned; |
| typedef remove_all_t<typename LhsMatrixTypeCleaned::Nested> LhsMatrixTypeNested; |
| EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) |
| : m_lhs(take_matrix_for_product<Lhs>::run(lhs)), m_rhs(rhs) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } |
| |
| template <typename Dest> |
| EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { |
| // FIXME investigate how to allow lazy evaluation of this product when possible |
| dst = Block < const LhsMatrixTypeNested, LhsMatrixTypeNested::RowsAtCompileTime, |
| LhsMatrixTypeNested::ColsAtCompileTime == Dynamic |
| ? Dynamic |
| : LhsMatrixTypeNested::ColsAtCompileTime - 1 > (m_lhs, 0, 0, m_lhs.rows(), m_lhs.cols() - 1) * m_rhs; |
| dst += m_lhs.col(m_lhs.cols() - 1).rowwise().template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols()); |
| } |
| |
| typename LhsMatrixTypeCleaned::Nested m_lhs; |
| typename MatrixType::Nested m_rhs; |
| }; |
| |
| template <typename MatrixType, typename Rhs> |
| struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> > { |
| typedef |
| typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, MatrixType::RowsAtCompileTime, |
| Rhs::ColsAtCompileTime, MatrixType::PlainObject::Options, |
| MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime>::type ReturnType; |
| }; |
| |
| template <typename MatrixType, typename Rhs> |
| struct homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> |
| : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> > { |
| typedef remove_all_t<typename Rhs::Nested> RhsNested; |
| EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } |
| |
| template <typename Dest> |
| EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { |
| // FIXME investigate how to allow lazy evaluation of this product when possible |
| dst = m_lhs * Block < const RhsNested, |
| RhsNested::RowsAtCompileTime == Dynamic ? Dynamic : RhsNested::RowsAtCompileTime - 1, |
| RhsNested::ColsAtCompileTime > (m_rhs, 0, 0, m_rhs.rows() - 1, m_rhs.cols()); |
| dst += m_rhs.row(m_rhs.rows() - 1).colwise().template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows()); |
| } |
| |
| typename MatrixType::Nested m_lhs; |
| typename Rhs::Nested m_rhs; |
| }; |
| |
| template <typename ArgType, int Direction> |
| struct evaluator_traits<Homogeneous<ArgType, Direction> > { |
| typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind; |
| typedef HomogeneousShape Shape; |
| }; |
| |
| template <> |
| struct AssignmentKind<DenseShape, HomogeneousShape> { |
| typedef Dense2Dense Kind; |
| }; |
| |
| template <typename ArgType, int Direction> |
| struct unary_evaluator<Homogeneous<ArgType, Direction>, IndexBased> |
| : evaluator<typename Homogeneous<ArgType, Direction>::PlainObject> { |
| typedef Homogeneous<ArgType, Direction> XprType; |
| typedef typename XprType::PlainObject PlainObject; |
| typedef evaluator<PlainObject> Base; |
| |
| EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : Base(), m_temp(op) { |
| internal::construct_at<Base>(this, m_temp); |
| } |
| |
| protected: |
| PlainObject m_temp; |
| }; |
| |
| // dense = homogeneous |
| template <typename DstXprType, typename ArgType, typename Scalar> |
| struct Assignment<DstXprType, Homogeneous<ArgType, Vertical>, internal::assign_op<Scalar, typename ArgType::Scalar>, |
| Dense2Dense> { |
| typedef Homogeneous<ArgType, Vertical> SrcXprType; |
| EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::assign_op<Scalar, typename ArgType::Scalar>&) { |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); |
| |
| dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression(); |
| dst.row(dst.rows() - 1).setOnes(); |
| } |
| }; |
| |
| // dense = homogeneous |
| template <typename DstXprType, typename ArgType, typename Scalar> |
| struct Assignment<DstXprType, Homogeneous<ArgType, Horizontal>, internal::assign_op<Scalar, typename ArgType::Scalar>, |
| Dense2Dense> { |
| typedef Homogeneous<ArgType, Horizontal> SrcXprType; |
| EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, |
| const internal::assign_op<Scalar, typename ArgType::Scalar>&) { |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); |
| |
| dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression(); |
| dst.col(dst.cols() - 1).setOnes(); |
| } |
| }; |
| |
| template <typename LhsArg, typename Rhs, int ProductTag> |
| struct generic_product_impl<Homogeneous<LhsArg, Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag> { |
| template <typename Dest> |
| EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg, Horizontal>& lhs, const Rhs& rhs) { |
| homogeneous_right_product_impl<Homogeneous<LhsArg, Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs> |
| struct homogeneous_right_product_refactoring_helper { |
| enum { Dim = Lhs::ColsAtCompileTime, Rows = Lhs::RowsAtCompileTime }; |
| typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst; |
| typedef std::remove_const_t<LinearBlockConst> LinearBlock; |
| typedef typename Rhs::ConstRowXpr ConstantColumn; |
| typedef Replicate<const ConstantColumn, Rows, 1> ConstantBlock; |
| typedef Product<Lhs, LinearBlock, LazyProduct> LinearProduct; |
| typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar, typename Rhs::Scalar>, const LinearProduct, |
| const ConstantBlock> |
| Xpr; |
| }; |
| |
| template <typename Lhs, typename Rhs, int ProductTag> |
| struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape> |
| : public evaluator< |
| typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression, Rhs>::Xpr> { |
| typedef Product<Lhs, Rhs, LazyProduct> XprType; |
| typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression, Rhs> helper; |
| typedef typename helper::ConstantBlock ConstantBlock; |
| typedef typename helper::Xpr RefactoredXpr; |
| typedef evaluator<RefactoredXpr> Base; |
| |
| EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| : Base(xpr.lhs().nestedExpression().lazyProduct( |
| xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols())) + |
| ConstantBlock(xpr.rhs().row(xpr.rhs().rows() - 1), xpr.lhs().rows(), 1)) {} |
| }; |
| |
| template <typename Lhs, typename RhsArg, int ProductTag> |
| struct generic_product_impl<Lhs, Homogeneous<RhsArg, Vertical>, DenseShape, HomogeneousShape, ProductTag> { |
| template <typename Dest> |
| EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg, Vertical>& rhs) { |
| homogeneous_left_product_impl<Homogeneous<RhsArg, Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); |
| } |
| }; |
| |
| // TODO: the following specialization is to address a regression from 3.2 to 3.3 |
| // In the future, this path should be optimized. |
| template <typename Lhs, typename RhsArg, int ProductTag> |
| struct generic_product_impl<Lhs, Homogeneous<RhsArg, Vertical>, TriangularShape, HomogeneousShape, ProductTag> { |
| template <typename Dest> |
| static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg, Vertical>& rhs) { |
| dst.noalias() = lhs * rhs.eval(); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs> |
| struct homogeneous_left_product_refactoring_helper { |
| enum { Dim = Rhs::RowsAtCompileTime, Cols = Rhs::ColsAtCompileTime }; |
| typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst; |
| typedef std::remove_const_t<LinearBlockConst> LinearBlock; |
| typedef typename Lhs::ConstColXpr ConstantColumn; |
| typedef Replicate<const ConstantColumn, 1, Cols> ConstantBlock; |
| typedef Product<LinearBlock, Rhs, LazyProduct> LinearProduct; |
| typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar, typename Rhs::Scalar>, const LinearProduct, |
| const ConstantBlock> |
| Xpr; |
| }; |
| |
| template <typename Lhs, typename Rhs, int ProductTag> |
| struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape> |
| : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs, typename Rhs::NestedExpression>::Xpr> { |
| typedef Product<Lhs, Rhs, LazyProduct> XprType; |
| typedef homogeneous_left_product_refactoring_helper<Lhs, typename Rhs::NestedExpression> helper; |
| typedef typename helper::ConstantBlock ConstantBlock; |
| typedef typename helper::Xpr RefactoredXpr; |
| typedef evaluator<RefactoredXpr> Base; |
| |
| EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) |
| : Base(xpr.lhs() |
| .template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) |
| .lazyProduct(xpr.rhs().nestedExpression()) + |
| ConstantBlock(xpr.lhs().col(xpr.lhs().cols() - 1), 1, xpr.rhs().cols())) {} |
| }; |
| |
| template <typename Scalar, int Dim, int Mode, int Options, typename RhsArg, int ProductTag> |
| struct generic_product_impl<Transform<Scalar, Dim, Mode, Options>, Homogeneous<RhsArg, Vertical>, DenseShape, |
| HomogeneousShape, ProductTag> { |
| typedef Transform<Scalar, Dim, Mode, Options> TransformType; |
| template <typename Dest> |
| EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg, Vertical>& rhs) { |
| homogeneous_left_product_impl<Homogeneous<RhsArg, Vertical>, TransformType>(lhs, rhs.nestedExpression()) |
| .evalTo(dst); |
| } |
| }; |
| |
| template <typename ExpressionType, int Side, bool Transposed> |
| struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape> |
| : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> {}; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_HOMOGENEOUS_H |