blob: 64c1b651a68248d9d0e742a23add83f3b8cd383b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOMOGENEOUS_H
#define EIGEN_HOMOGENEOUS_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Homogeneous
*
* \brief Expression of one (or a set of) homogeneous vector(s)
*
* \param MatrixType the type of the object in which we are making homogeneous
*
* This class represents an expression of one (or a set of) homogeneous vector(s).
* It is the return type of MatrixBase::homogeneous() and most of the time
* this is the only way it is used.
*
* \sa MatrixBase::homogeneous()
*/
namespace internal {
template <typename MatrixType, int Direction>
struct traits<Homogeneous<MatrixType, Direction> > : traits<MatrixType> {
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNested_;
enum {
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
RowsAtCompileTime = Direction == Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction == Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
TmpFlags = MatrixTypeNested_::Flags & HereditaryBits,
Flags = ColsAtCompileTime == 1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime == 1 ? (TmpFlags | RowMajorBit)
: TmpFlags
};
};
template <typename MatrixType, typename Lhs>
struct homogeneous_left_product_impl;
template <typename MatrixType, typename Rhs>
struct homogeneous_right_product_impl;
} // end namespace internal
template <typename MatrixType, int Direction_>
class Homogeneous : public MatrixBase<Homogeneous<MatrixType, Direction_> >, internal::no_assignment_operator {
public:
typedef MatrixType NestedExpression;
enum { Direction = Direction_ };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT {
return m_matrix.rows() + (int(Direction) == Vertical ? 1 : 0);
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT {
return m_matrix.cols() + (int(Direction) == Horizontal ? 1 : 0);
}
EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
template <typename Rhs>
EIGEN_DEVICE_FUNC inline const Product<Homogeneous, Rhs> operator*(const MatrixBase<Rhs>& rhs) const {
eigen_assert(int(Direction) == Horizontal);
return Product<Homogeneous, Rhs>(*this, rhs.derived());
}
template <typename Lhs>
friend EIGEN_DEVICE_FUNC inline const Product<Lhs, Homogeneous> operator*(const MatrixBase<Lhs>& lhs,
const Homogeneous& rhs) {
eigen_assert(int(Direction) == Vertical);
return Product<Lhs, Homogeneous>(lhs.derived(), rhs);
}
template <typename Scalar, int Dim, int Mode, int Options>
friend EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar, Dim, Mode, Options>, Homogeneous> operator*(
const Transform<Scalar, Dim, Mode, Options>& lhs, const Homogeneous& rhs) {
eigen_assert(int(Direction) == Vertical);
return Product<Transform<Scalar, Dim, Mode, Options>, Homogeneous>(lhs, rhs);
}
template <typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar, Scalar)>::type redux(
const Func& func) const {
return func(m_matrix.redux(func), Scalar(1));
}
protected:
typename MatrixType::Nested m_matrix;
};
/** \geometry_module \ingroup Geometry_Module
*
* \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as
* the last coefficient.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* \only_for_vectors
*
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
* \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType MatrixBase<Derived>::homogeneous() const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return HomogeneousReturnType(derived());
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of
* the matrix.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
* \sa MatrixBase::homogeneous(), class Homogeneous */
template <typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType, Direction> VectorwiseOp<ExpressionType, Direction>::homogeneous()
const {
return HomogeneousReturnType(_expression());
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief homogeneous normalization
*
* \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is essentially a shortcut for:
* \code
this->head(this->size()-1)/this->coeff(this->size()-1);
\endcode
*
* Example: \include MatrixBase_hnormalized.cpp
* Output: \verbinclude MatrixBase_hnormalized.out
*
* \sa VectorwiseOp::hnormalized() */
template <typename Derived>
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType MatrixBase<Derived>::hnormalized()
const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return ConstStartMinusOne(derived(), 0, 0, ColsAtCompileTime == 1 ? size() - 1 : 1,
ColsAtCompileTime == 1 ? 1 : size() - 1) /
coeff(size() - 1);
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief column or row-wise homogeneous normalization
*
* \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last
* coefficient of each column (or row).
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
*
* Example: \include DirectionWise_hnormalized.cpp
* Output: \verbinclude DirectionWise_hnormalized.out
*
* \sa MatrixBase::hnormalized() */
template <typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType, Direction>::HNormalizedReturnType
VectorwiseOp<ExpressionType, Direction>::hnormalized() const {
return HNormalized_Block(_expression(), 0, 0, Direction == Vertical ? _expression().rows() - 1 : _expression().rows(),
Direction == Horizontal ? _expression().cols() - 1 : _expression().cols())
.cwiseQuotient(Replicate < HNormalized_Factors, Direction == Vertical ? HNormalized_SizeMinusOne : 1,
Direction == Horizontal
? HNormalized_SizeMinusOne
: 1 > (HNormalized_Factors(_expression(), Direction == Vertical ? _expression().rows() - 1 : 0,
Direction == Horizontal ? _expression().cols() - 1 : 0,
Direction == Vertical ? 1 : _expression().rows(),
Direction == Horizontal ? 1 : _expression().cols()),
Direction == Vertical ? _expression().rows() - 1 : 1,
Direction == Horizontal ? _expression().cols() - 1 : 1));
}
namespace internal {
template <typename MatrixOrTransformType>
struct take_matrix_for_product {
typedef MatrixOrTransformType type;
EIGEN_DEVICE_FUNC static const type& run(const type& x) { return x; }
};
template <typename Scalar, int Dim, int Mode, int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > {
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
typedef std::add_const_t<typename TransformType::ConstAffinePart> type;
EIGEN_DEVICE_FUNC static type run(const TransformType& x) { return x.affine(); }
};
template <typename Scalar, int Dim, int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > {
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
typedef typename TransformType::MatrixType type;
EIGEN_DEVICE_FUNC static const type& run(const TransformType& x) { return x.matrix(); }
};
template <typename MatrixType, typename Lhs>
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> > {
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
typedef remove_all_t<MatrixType> MatrixTypeCleaned;
typedef remove_all_t<LhsMatrixType> LhsMatrixTypeCleaned;
typedef typename make_proper_matrix_type<
typename traits<MatrixTypeCleaned>::Scalar, LhsMatrixTypeCleaned::RowsAtCompileTime,
MatrixTypeCleaned::ColsAtCompileTime, MatrixTypeCleaned::PlainObject::Options,
LhsMatrixTypeCleaned::MaxRowsAtCompileTime, MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
};
template <typename MatrixType, typename Lhs>
struct homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs>
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> > {
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
typedef remove_all_t<LhsMatrixType> LhsMatrixTypeCleaned;
typedef remove_all_t<typename LhsMatrixTypeCleaned::Nested> LhsMatrixTypeNested;
EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)), m_rhs(rhs) {}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
template <typename Dest>
EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const {
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = Block < const LhsMatrixTypeNested, LhsMatrixTypeNested::RowsAtCompileTime,
LhsMatrixTypeNested::ColsAtCompileTime == Dynamic
? Dynamic
: LhsMatrixTypeNested::ColsAtCompileTime - 1 > (m_lhs, 0, 0, m_lhs.rows(), m_lhs.cols() - 1) * m_rhs;
dst += m_lhs.col(m_lhs.cols() - 1).rowwise().template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
}
typename LhsMatrixTypeCleaned::Nested m_lhs;
typename MatrixType::Nested m_rhs;
};
template <typename MatrixType, typename Rhs>
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> > {
typedef
typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, MatrixType::RowsAtCompileTime,
Rhs::ColsAtCompileTime, MatrixType::PlainObject::Options,
MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime>::type ReturnType;
};
template <typename MatrixType, typename Rhs>
struct homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs>
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> > {
typedef remove_all_t<typename Rhs::Nested> RhsNested;
EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
template <typename Dest>
EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const {
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = m_lhs * Block < const RhsNested,
RhsNested::RowsAtCompileTime == Dynamic ? Dynamic : RhsNested::RowsAtCompileTime - 1,
RhsNested::ColsAtCompileTime > (m_rhs, 0, 0, m_rhs.rows() - 1, m_rhs.cols());
dst += m_rhs.row(m_rhs.rows() - 1).colwise().template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
}
typename MatrixType::Nested m_lhs;
typename Rhs::Nested m_rhs;
};
template <typename ArgType, int Direction>
struct evaluator_traits<Homogeneous<ArgType, Direction> > {
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
typedef HomogeneousShape Shape;
};
template <>
struct AssignmentKind<DenseShape, HomogeneousShape> {
typedef Dense2Dense Kind;
};
template <typename ArgType, int Direction>
struct unary_evaluator<Homogeneous<ArgType, Direction>, IndexBased>
: evaluator<typename Homogeneous<ArgType, Direction>::PlainObject> {
typedef Homogeneous<ArgType, Direction> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : Base(), m_temp(op) {
internal::construct_at<Base>(this, m_temp);
}
protected:
PlainObject m_temp;
};
// dense = homogeneous
template <typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType, Vertical>, internal::assign_op<Scalar, typename ArgType::Scalar>,
Dense2Dense> {
typedef Homogeneous<ArgType, Vertical> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<Scalar, typename ArgType::Scalar>&) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
dst.row(dst.rows() - 1).setOnes();
}
};
// dense = homogeneous
template <typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType, Horizontal>, internal::assign_op<Scalar, typename ArgType::Scalar>,
Dense2Dense> {
typedef Homogeneous<ArgType, Horizontal> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<Scalar, typename ArgType::Scalar>&) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
dst.col(dst.cols() - 1).setOnes();
}
};
template <typename LhsArg, typename Rhs, int ProductTag>
struct generic_product_impl<Homogeneous<LhsArg, Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag> {
template <typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg, Horizontal>& lhs, const Rhs& rhs) {
homogeneous_right_product_impl<Homogeneous<LhsArg, Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
}
};
template <typename Lhs, typename Rhs>
struct homogeneous_right_product_refactoring_helper {
enum { Dim = Lhs::ColsAtCompileTime, Rows = Lhs::RowsAtCompileTime };
typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
typedef std::remove_const_t<LinearBlockConst> LinearBlock;
typedef typename Rhs::ConstRowXpr ConstantColumn;
typedef Replicate<const ConstantColumn, Rows, 1> ConstantBlock;
typedef Product<Lhs, LinearBlock, LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar, typename Rhs::Scalar>, const LinearProduct,
const ConstantBlock>
Xpr;
};
template <typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
: public evaluator<
typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression, Rhs>::Xpr> {
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression, Rhs> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs().nestedExpression().lazyProduct(
xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols())) +
ConstantBlock(xpr.rhs().row(xpr.rhs().rows() - 1), xpr.lhs().rows(), 1)) {}
};
template <typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg, Vertical>, DenseShape, HomogeneousShape, ProductTag> {
template <typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg, Vertical>& rhs) {
homogeneous_left_product_impl<Homogeneous<RhsArg, Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
// TODO: the following specialization is to address a regression from 3.2 to 3.3
// In the future, this path should be optimized.
template <typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg, Vertical>, TriangularShape, HomogeneousShape, ProductTag> {
template <typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg, Vertical>& rhs) {
dst.noalias() = lhs * rhs.eval();
}
};
template <typename Lhs, typename Rhs>
struct homogeneous_left_product_refactoring_helper {
enum { Dim = Rhs::RowsAtCompileTime, Cols = Rhs::ColsAtCompileTime };
typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
typedef std::remove_const_t<LinearBlockConst> LinearBlock;
typedef typename Lhs::ConstColXpr ConstantColumn;
typedef Replicate<const ConstantColumn, 1, Cols> ConstantBlock;
typedef Product<LinearBlock, Rhs, LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar, typename Rhs::Scalar>, const LinearProduct,
const ConstantBlock>
Xpr;
};
template <typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
: public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs, typename Rhs::NestedExpression>::Xpr> {
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_left_product_refactoring_helper<Lhs, typename Rhs::NestedExpression> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs()
.template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows())
.lazyProduct(xpr.rhs().nestedExpression()) +
ConstantBlock(xpr.lhs().col(xpr.lhs().cols() - 1), 1, xpr.rhs().cols())) {}
};
template <typename Scalar, int Dim, int Mode, int Options, typename RhsArg, int ProductTag>
struct generic_product_impl<Transform<Scalar, Dim, Mode, Options>, Homogeneous<RhsArg, Vertical>, DenseShape,
HomogeneousShape, ProductTag> {
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
template <typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg, Vertical>& rhs) {
homogeneous_left_product_impl<Homogeneous<RhsArg, Vertical>, TransformType>(lhs, rhs.nestedExpression())
.evalTo(dst);
}
};
template <typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
: public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> {};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_HOMOGENEOUS_H