| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BICGSTAB_H |
| #define EIGEN_BICGSTAB_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** \internal Low-level bi conjugate gradient stabilized algorithm |
| * \param mat The matrix A |
| * \param rhs The right hand side vector b |
| * \param x On input and initial solution, on output the computed solution. |
| * \param precond A preconditioner being able to efficiently solve for an |
| * approximation of Ax=b (regardless of b) |
| * \param iters On input the max number of iteration, on output the number of performed iterations. |
| * \param tol_error On input the tolerance error, on output an estimation of the relative error. |
| * \return false in the case of numerical issue, for example a break down of BiCGSTAB. |
| */ |
| template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, Index& iters, |
| typename Dest::RealScalar& tol_error) { |
| using std::abs; |
| using std::sqrt; |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; |
| RealScalar tol = tol_error; |
| Index maxIters = iters; |
| |
| Index n = mat.cols(); |
| VectorType r = rhs - mat * x; |
| VectorType r0 = r; |
| |
| RealScalar r0_sqnorm = r0.squaredNorm(); |
| RealScalar rhs_sqnorm = rhs.squaredNorm(); |
| if (rhs_sqnorm == 0) { |
| x.setZero(); |
| return true; |
| } |
| Scalar rho(1); |
| Scalar alpha(1); |
| Scalar w(1); |
| |
| VectorType v = VectorType::Zero(n), p = VectorType::Zero(n); |
| VectorType y(n), z(n); |
| VectorType kt(n), ks(n); |
| |
| VectorType s(n), t(n); |
| |
| RealScalar tol2 = tol * tol * rhs_sqnorm; |
| RealScalar eps2 = NumTraits<Scalar>::epsilon() * NumTraits<Scalar>::epsilon(); |
| Index i = 0; |
| Index restarts = 0; |
| |
| while (r.squaredNorm() > tol2 && i < maxIters) { |
| Scalar rho_old = rho; |
| |
| rho = r0.dot(r); |
| if (abs(rho) < eps2 * r0_sqnorm) { |
| // The new residual vector became too orthogonal to the arbitrarily chosen direction r0 |
| // Let's restart with a new r0: |
| r = rhs - mat * x; |
| r0 = r; |
| rho = r0_sqnorm = r.squaredNorm(); |
| if (restarts++ == 0) i = 0; |
| } |
| Scalar beta = (rho / rho_old) * (alpha / w); |
| p = r + beta * (p - w * v); |
| |
| y = precond.solve(p); |
| |
| v.noalias() = mat * y; |
| |
| alpha = rho / r0.dot(v); |
| s = r - alpha * v; |
| |
| z = precond.solve(s); |
| t.noalias() = mat * z; |
| |
| RealScalar tmp = t.squaredNorm(); |
| if (tmp > RealScalar(0)) |
| w = t.dot(s) / tmp; |
| else |
| w = Scalar(0); |
| x += alpha * y + w * z; |
| r = s - w * t; |
| ++i; |
| } |
| tol_error = sqrt(r.squaredNorm() / rhs_sqnorm); |
| iters = i; |
| return true; |
| } |
| |
| } // namespace internal |
| |
| template <typename MatrixType_, typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> > |
| class BiCGSTAB; |
| |
| namespace internal { |
| |
| template <typename MatrixType_, typename Preconditioner_> |
| struct traits<BiCGSTAB<MatrixType_, Preconditioner_> > { |
| typedef MatrixType_ MatrixType; |
| typedef Preconditioner_ Preconditioner; |
| }; |
| |
| } // namespace internal |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A bi conjugate gradient stabilized solver for sparse square problems |
| * |
| * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient |
| * stabilized algorithm. The vectors x and b can be either dense or sparse. |
| * |
| * \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix. |
| * \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner |
| * |
| * \implsparsesolverconcept |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * The tolerance corresponds to the relative residual error: |Ax-b|/|b| |
| * |
| * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format. |
| * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. |
| * See \ref TopicMultiThreading for details. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| * \include BiCGSTAB_simple.cpp |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. |
| * |
| * BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. |
| * |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template <typename MatrixType_, typename Preconditioner_> |
| class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<MatrixType_, Preconditioner_> > { |
| typedef IterativeSolverBase<BiCGSTAB> Base; |
| using Base::m_error; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| using Base::m_iterations; |
| using Base::matrix; |
| |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Preconditioner_ Preconditioner; |
| |
| public: |
| /** Default constructor. */ |
| BiCGSTAB() : Base() {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| template <typename MatrixDerived> |
| explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {} |
| |
| ~BiCGSTAB() {} |
| |
| /** \internal */ |
| template <typename Rhs, typename Dest> |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| bool ret = internal::bicgstab(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error); |
| |
| m_info = (!ret) ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence; |
| } |
| |
| protected: |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_BICGSTAB_H |