blob: e3154b497a5f0af29569ea219804bbb637c14480 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BICGSTAB_H
#define EIGEN_BICGSTAB_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
/** \internal Low-level bi conjugate gradient stabilized algorithm
* \param mat The matrix A
* \param rhs The right hand side vector b
* \param x On input and initial solution, on output the computed solution.
* \param precond A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
* \return false in the case of numerical issue, for example a break down of BiCGSTAB.
*/
template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond, Index& iters,
typename Dest::RealScalar& tol_error) {
using std::abs;
using std::sqrt;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar, Dynamic, 1> VectorType;
RealScalar tol = tol_error;
Index maxIters = iters;
Index n = mat.cols();
VectorType r = rhs - mat * x;
VectorType r0 = r;
RealScalar r0_sqnorm = r0.squaredNorm();
RealScalar rhs_sqnorm = rhs.squaredNorm();
if (rhs_sqnorm == 0) {
x.setZero();
return true;
}
Scalar rho(1);
Scalar alpha(1);
Scalar w(1);
VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
VectorType y(n), z(n);
VectorType kt(n), ks(n);
VectorType s(n), t(n);
RealScalar tol2 = tol * tol * rhs_sqnorm;
RealScalar eps2 = NumTraits<Scalar>::epsilon() * NumTraits<Scalar>::epsilon();
Index i = 0;
Index restarts = 0;
while (r.squaredNorm() > tol2 && i < maxIters) {
Scalar rho_old = rho;
rho = r0.dot(r);
if (abs(rho) < eps2 * r0_sqnorm) {
// The new residual vector became too orthogonal to the arbitrarily chosen direction r0
// Let's restart with a new r0:
r = rhs - mat * x;
r0 = r;
rho = r0_sqnorm = r.squaredNorm();
if (restarts++ == 0) i = 0;
}
Scalar beta = (rho / rho_old) * (alpha / w);
p = r + beta * (p - w * v);
y = precond.solve(p);
v.noalias() = mat * y;
alpha = rho / r0.dot(v);
s = r - alpha * v;
z = precond.solve(s);
t.noalias() = mat * z;
RealScalar tmp = t.squaredNorm();
if (tmp > RealScalar(0))
w = t.dot(s) / tmp;
else
w = Scalar(0);
x += alpha * y + w * z;
r = s - w * t;
++i;
}
tol_error = sqrt(r.squaredNorm() / rhs_sqnorm);
iters = i;
return true;
}
} // namespace internal
template <typename MatrixType_, typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> >
class BiCGSTAB;
namespace internal {
template <typename MatrixType_, typename Preconditioner_>
struct traits<BiCGSTAB<MatrixType_, Preconditioner_> > {
typedef MatrixType_ MatrixType;
typedef Preconditioner_ Preconditioner;
};
} // namespace internal
/** \ingroup IterativeLinearSolvers_Module
* \brief A bi conjugate gradient stabilized solver for sparse square problems
*
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
* stabilized algorithm. The vectors x and b can be either dense or sparse.
*
* \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner
*
* \implsparsesolverconcept
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
* The tolerance corresponds to the relative residual error: |Ax-b|/|b|
*
* \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format.
* Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
* See \ref TopicMultiThreading for details.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \include BiCGSTAB_simple.cpp
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template <typename MatrixType_, typename Preconditioner_>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<MatrixType_, Preconditioner_> > {
typedef IterativeSolverBase<BiCGSTAB> Base;
using Base::m_error;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_iterations;
using Base::matrix;
public:
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Preconditioner_ Preconditioner;
public:
/** Default constructor. */
BiCGSTAB() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template <typename MatrixDerived>
explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~BiCGSTAB() {}
/** \internal */
template <typename Rhs, typename Dest>
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const {
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
bool ret = internal::bicgstab(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error);
m_info = (!ret) ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence;
}
protected:
};
} // end namespace Eigen
#endif // EIGEN_BICGSTAB_H