| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_KLUSUPPORT_H |
| #define EIGEN_KLUSUPPORT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /* TODO extract L, extract U, compute det, etc... */ |
| |
| /** \ingroup KLUSupport_Module |
| * \brief A sparse LU factorization and solver based on KLU |
| * |
| * This class allows to solve for A.X = B sparse linear problems via a LU factorization |
| * using the KLU library. The sparse matrix A must be squared and full rank. |
| * The vectors or matrices X and B can be either dense or sparse. |
| * |
| * \warning The input matrix A should be in a \b compressed and \b column-major form. |
| * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. |
| * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> |
| * |
| * \implsparsesolverconcept |
| * |
| * \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU |
| */ |
| |
| inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], |
| klu_common *Common, double) { |
| return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, |
| Common); |
| } |
| |
| inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[], |
| klu_common *Common, std::complex<double>) { |
| return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), |
| &numext::real_ref(B[0]), Common); |
| } |
| |
| inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], |
| klu_common *Common, double) { |
| return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, |
| Common); |
| } |
| |
| inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[], |
| klu_common *Common, std::complex<double>) { |
| return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), |
| &numext::real_ref(B[0]), 0, Common); |
| } |
| |
| inline klu_numeric *klu_factor(int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double) { |
| return klu_factor(Ap, Ai, Ax, Symbolic, Common); |
| } |
| |
| inline klu_numeric *klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, |
| klu_common *Common, std::complex<double>) { |
| return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common); |
| } |
| |
| template <typename MatrixType_> |
| class KLU : public SparseSolverBase<KLU<MatrixType_> > { |
| protected: |
| typedef SparseSolverBase<KLU<MatrixType_> > Base; |
| using Base::m_isInitialized; |
| |
| public: |
| using Base::_solve_impl; |
| typedef MatrixType_ MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef Matrix<Scalar, Dynamic, 1> Vector; |
| typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; |
| typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; |
| typedef SparseMatrix<Scalar> LUMatrixType; |
| typedef SparseMatrix<Scalar, ColMajor, int> KLUMatrixType; |
| typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef; |
| enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; |
| |
| public: |
| KLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); } |
| |
| template <typename InputMatrixType> |
| explicit KLU(const InputMatrixType &matrix) : mp_matrix(matrix) { |
| init(); |
| compute(matrix); |
| } |
| |
| ~KLU() { |
| if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); |
| if (m_numeric) klu_free_numeric(&m_numeric, &m_common); |
| } |
| |
| EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); } |
| EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the matrix.appears to be negative. |
| */ |
| ComputationInfo info() const { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return m_info; |
| } |
| #if 0 // not implemented yet |
| inline const LUMatrixType& matrixL() const |
| { |
| if (m_extractedDataAreDirty) extractData(); |
| return m_l; |
| } |
| |
| inline const LUMatrixType& matrixU() const |
| { |
| if (m_extractedDataAreDirty) extractData(); |
| return m_u; |
| } |
| |
| inline const IntColVectorType& permutationP() const |
| { |
| if (m_extractedDataAreDirty) extractData(); |
| return m_p; |
| } |
| |
| inline const IntRowVectorType& permutationQ() const |
| { |
| if (m_extractedDataAreDirty) extractData(); |
| return m_q; |
| } |
| #endif |
| /** Computes the sparse Cholesky decomposition of \a matrix |
| * Note that the matrix should be column-major, and in compressed format for best performance. |
| * \sa SparseMatrix::makeCompressed(). |
| */ |
| template <typename InputMatrixType> |
| void compute(const InputMatrixType &matrix) { |
| if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); |
| if (m_numeric) klu_free_numeric(&m_numeric, &m_common); |
| grab(matrix.derived()); |
| analyzePattern_impl(); |
| factorize_impl(); |
| } |
| |
| /** Performs a symbolic decomposition on the sparcity of \a matrix. |
| * |
| * This function is particularly useful when solving for several problems having the same structure. |
| * |
| * \sa factorize(), compute() |
| */ |
| template <typename InputMatrixType> |
| void analyzePattern(const InputMatrixType &matrix) { |
| if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); |
| if (m_numeric) klu_free_numeric(&m_numeric, &m_common); |
| |
| grab(matrix.derived()); |
| |
| analyzePattern_impl(); |
| } |
| |
| /** Provides access to the control settings array used by KLU. |
| * |
| * See KLU documentation for details. |
| */ |
| inline const klu_common &kluCommon() const { return m_common; } |
| |
| /** Provides access to the control settings array used by UmfPack. |
| * |
| * If this array contains NaN's, the default values are used. |
| * |
| * See KLU documentation for details. |
| */ |
| inline klu_common &kluCommon() { return m_common; } |
| |
| /** Performs a numeric decomposition of \a matrix |
| * |
| * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. |
| * |
| * \sa analyzePattern(), compute() |
| */ |
| template <typename InputMatrixType> |
| void factorize(const InputMatrixType &matrix) { |
| eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()"); |
| if (m_numeric) klu_free_numeric(&m_numeric, &m_common); |
| |
| grab(matrix.derived()); |
| |
| factorize_impl(); |
| } |
| |
| /** \internal */ |
| template <typename BDerived, typename XDerived> |
| bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; |
| |
| #if 0 // not implemented yet |
| Scalar determinant() const; |
| |
| void extractData() const; |
| #endif |
| |
| protected: |
| void init() { |
| m_info = InvalidInput; |
| m_isInitialized = false; |
| m_numeric = 0; |
| m_symbolic = 0; |
| m_extractedDataAreDirty = true; |
| |
| klu_defaults(&m_common); |
| } |
| |
| void analyzePattern_impl() { |
| m_info = InvalidInput; |
| m_analysisIsOk = false; |
| m_factorizationIsOk = false; |
| m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()), |
| const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()), |
| const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), &m_common); |
| if (m_symbolic) { |
| m_isInitialized = true; |
| m_info = Success; |
| m_analysisIsOk = true; |
| m_extractedDataAreDirty = true; |
| } |
| } |
| |
| void factorize_impl() { |
| m_numeric = klu_factor(const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()), |
| const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), |
| const_cast<Scalar *>(mp_matrix.valuePtr()), m_symbolic, &m_common, Scalar()); |
| |
| m_info = m_numeric ? Success : NumericalIssue; |
| m_factorizationIsOk = m_numeric ? 1 : 0; |
| m_extractedDataAreDirty = true; |
| } |
| |
| template <typename MatrixDerived> |
| void grab(const EigenBase<MatrixDerived> &A) { |
| internal::destroy_at(&mp_matrix); |
| internal::construct_at(&mp_matrix, A.derived()); |
| } |
| |
| void grab(const KLUMatrixRef &A) { |
| if (&(A.derived()) != &mp_matrix) { |
| internal::destroy_at(&mp_matrix); |
| internal::construct_at(&mp_matrix, A); |
| } |
| } |
| |
| // cached data to reduce reallocation, etc. |
| #if 0 // not implemented yet |
| mutable LUMatrixType m_l; |
| mutable LUMatrixType m_u; |
| mutable IntColVectorType m_p; |
| mutable IntRowVectorType m_q; |
| #endif |
| |
| KLUMatrixType m_dummy; |
| KLUMatrixRef mp_matrix; |
| |
| klu_numeric *m_numeric; |
| klu_symbolic *m_symbolic; |
| klu_common m_common; |
| mutable ComputationInfo m_info; |
| int m_factorizationIsOk; |
| int m_analysisIsOk; |
| mutable bool m_extractedDataAreDirty; |
| |
| private: |
| KLU(const KLU &) {} |
| }; |
| |
| #if 0 // not implemented yet |
| template<typename MatrixType> |
| void KLU<MatrixType>::extractData() const |
| { |
| if (m_extractedDataAreDirty) |
| { |
| eigen_assert(false && "KLU: extractData Not Yet Implemented"); |
| |
| // get size of the data |
| int lnz, unz, rows, cols, nz_udiag; |
| umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); |
| |
| // allocate data |
| m_l.resize(rows,(std::min)(rows,cols)); |
| m_l.resizeNonZeros(lnz); |
| |
| m_u.resize((std::min)(rows,cols),cols); |
| m_u.resizeNonZeros(unz); |
| |
| m_p.resize(rows); |
| m_q.resize(cols); |
| |
| // extract |
| umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), |
| m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), |
| m_p.data(), m_q.data(), 0, 0, 0, m_numeric); |
| |
| m_extractedDataAreDirty = false; |
| } |
| } |
| |
| template<typename MatrixType> |
| typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const |
| { |
| eigen_assert(false && "KLU: extractData Not Yet Implemented"); |
| return Scalar(); |
| } |
| #endif |
| |
| template <typename MatrixType> |
| template <typename BDerived, typename XDerived> |
| bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const { |
| Index rhsCols = b.cols(); |
| EIGEN_STATIC_ASSERT((XDerived::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); |
| eigen_assert(m_factorizationIsOk && |
| "The decomposition is not in a valid state for solving, you must first call either compute() or " |
| "analyzePattern()/factorize()"); |
| |
| x = b; |
| int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), |
| const_cast<klu_common *>(&m_common), Scalar()); |
| |
| m_info = info != 0 ? Success : NumericalIssue; |
| return true; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_KLUSUPPORT_H |