blob: 574021dc592db42f8c88fbfcf931e80b2c5bb0ae [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_KLUSUPPORT_H
#define EIGEN_KLUSUPPORT_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/* TODO extract L, extract U, compute det, etc... */
/** \ingroup KLUSupport_Module
* \brief A sparse LU factorization and solver based on KLU
*
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
* using the KLU library. The sparse matrix A must be squared and full rank.
* The vectors or matrices X and B can be either dense or sparse.
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU
*/
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[],
klu_common *Common, double) {
return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B,
Common);
}
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[],
klu_common *Common, std::complex<double>) {
return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs),
&numext::real_ref(B[0]), Common);
}
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[],
klu_common *Common, double) {
return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B,
Common);
}
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[],
klu_common *Common, std::complex<double>) {
return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs),
&numext::real_ref(B[0]), 0, Common);
}
inline klu_numeric *klu_factor(int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double) {
return klu_factor(Ap, Ai, Ax, Symbolic, Common);
}
inline klu_numeric *klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic,
klu_common *Common, std::complex<double>) {
return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common);
}
template <typename MatrixType_>
class KLU : public SparseSolverBase<KLU<MatrixType_> > {
protected:
typedef SparseSolverBase<KLU<MatrixType_> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, Dynamic, 1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar> LUMatrixType;
typedef SparseMatrix<Scalar, ColMajor, int> KLUMatrixType;
typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef;
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
public:
KLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); }
template <typename InputMatrixType>
explicit KLU(const InputMatrixType &matrix) : mp_matrix(matrix) {
init();
compute(matrix);
}
~KLU() {
if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
}
EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); }
EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const {
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
#if 0 // not implemented yet
inline const LUMatrixType& matrixL() const
{
if (m_extractedDataAreDirty) extractData();
return m_l;
}
inline const LUMatrixType& matrixU() const
{
if (m_extractedDataAreDirty) extractData();
return m_u;
}
inline const IntColVectorType& permutationP() const
{
if (m_extractedDataAreDirty) extractData();
return m_p;
}
inline const IntRowVectorType& permutationQ() const
{
if (m_extractedDataAreDirty) extractData();
return m_q;
}
#endif
/** Computes the sparse Cholesky decomposition of \a matrix
* Note that the matrix should be column-major, and in compressed format for best performance.
* \sa SparseMatrix::makeCompressed().
*/
template <typename InputMatrixType>
void compute(const InputMatrixType &matrix) {
if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
grab(matrix.derived());
analyzePattern_impl();
factorize_impl();
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize(), compute()
*/
template <typename InputMatrixType>
void analyzePattern(const InputMatrixType &matrix) {
if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
grab(matrix.derived());
analyzePattern_impl();
}
/** Provides access to the control settings array used by KLU.
*
* See KLU documentation for details.
*/
inline const klu_common &kluCommon() const { return m_common; }
/** Provides access to the control settings array used by UmfPack.
*
* If this array contains NaN's, the default values are used.
*
* See KLU documentation for details.
*/
inline klu_common &kluCommon() { return m_common; }
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
*
* \sa analyzePattern(), compute()
*/
template <typename InputMatrixType>
void factorize(const InputMatrixType &matrix) {
eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()");
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
grab(matrix.derived());
factorize_impl();
}
/** \internal */
template <typename BDerived, typename XDerived>
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
#if 0 // not implemented yet
Scalar determinant() const;
void extractData() const;
#endif
protected:
void init() {
m_info = InvalidInput;
m_isInitialized = false;
m_numeric = 0;
m_symbolic = 0;
m_extractedDataAreDirty = true;
klu_defaults(&m_common);
}
void analyzePattern_impl() {
m_info = InvalidInput;
m_analysisIsOk = false;
m_factorizationIsOk = false;
m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()),
const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()),
const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), &m_common);
if (m_symbolic) {
m_isInitialized = true;
m_info = Success;
m_analysisIsOk = true;
m_extractedDataAreDirty = true;
}
}
void factorize_impl() {
m_numeric = klu_factor(const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()),
const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()),
const_cast<Scalar *>(mp_matrix.valuePtr()), m_symbolic, &m_common, Scalar());
m_info = m_numeric ? Success : NumericalIssue;
m_factorizationIsOk = m_numeric ? 1 : 0;
m_extractedDataAreDirty = true;
}
template <typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &A) {
internal::destroy_at(&mp_matrix);
internal::construct_at(&mp_matrix, A.derived());
}
void grab(const KLUMatrixRef &A) {
if (&(A.derived()) != &mp_matrix) {
internal::destroy_at(&mp_matrix);
internal::construct_at(&mp_matrix, A);
}
}
// cached data to reduce reallocation, etc.
#if 0 // not implemented yet
mutable LUMatrixType m_l;
mutable LUMatrixType m_u;
mutable IntColVectorType m_p;
mutable IntRowVectorType m_q;
#endif
KLUMatrixType m_dummy;
KLUMatrixRef mp_matrix;
klu_numeric *m_numeric;
klu_symbolic *m_symbolic;
klu_common m_common;
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
private:
KLU(const KLU &) {}
};
#if 0 // not implemented yet
template<typename MatrixType>
void KLU<MatrixType>::extractData() const
{
if (m_extractedDataAreDirty)
{
eigen_assert(false && "KLU: extractData Not Yet Implemented");
// get size of the data
int lnz, unz, rows, cols, nz_udiag;
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
// allocate data
m_l.resize(rows,(std::min)(rows,cols));
m_l.resizeNonZeros(lnz);
m_u.resize((std::min)(rows,cols),cols);
m_u.resizeNonZeros(unz);
m_p.resize(rows);
m_q.resize(cols);
// extract
umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
m_extractedDataAreDirty = false;
}
}
template<typename MatrixType>
typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const
{
eigen_assert(false && "KLU: extractData Not Yet Implemented");
return Scalar();
}
#endif
template <typename MatrixType>
template <typename BDerived, typename XDerived>
bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const {
Index rhsCols = b.cols();
EIGEN_STATIC_ASSERT((XDerived::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
eigen_assert(m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or "
"analyzePattern()/factorize()");
x = b;
int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(),
const_cast<klu_common *>(&m_common), Scalar());
m_info = info != 0 ? Success : NumericalIssue;
return true;
}
} // end namespace Eigen
#endif // EIGEN_KLUSUPPORT_H