| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| #ifndef METIS_SUPPORT_H |
| #define METIS_SUPPORT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| /** |
| * Get the fill-reducing ordering from the METIS package |
| * |
| * If A is the original matrix and Ap is the permuted matrix, |
| * the fill-reducing permutation is defined as follows : |
| * Row (column) i of A is the matperm(i) row (column) of Ap. |
| * WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm) |
| */ |
| template <typename StorageIndex> |
| class MetisOrdering { |
| public: |
| typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; |
| typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; |
| |
| template <typename MatrixType> |
| void get_symmetrized_graph(const MatrixType& A) { |
| Index m = A.cols(); |
| eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES"); |
| // Get the transpose of the input matrix |
| MatrixType At = A.transpose(); |
| // Get the number of nonzeros elements in each row/col of At+A |
| Index TotNz = 0; |
| IndexVector visited(m); |
| visited.setConstant(-1); |
| for (StorageIndex j = 0; j < m; j++) { |
| // Compute the union structure of of A(j,:) and At(j,:) |
| visited(j) = j; // Do not include the diagonal element |
| // Get the nonzeros in row/column j of A |
| for (typename MatrixType::InnerIterator it(A, j); it; ++it) { |
| Index idx = it.index(); // Get the row index (for column major) or column index (for row major) |
| if (visited(idx) != j) { |
| visited(idx) = j; |
| ++TotNz; |
| } |
| } |
| // Get the nonzeros in row/column j of At |
| for (typename MatrixType::InnerIterator it(At, j); it; ++it) { |
| Index idx = it.index(); |
| if (visited(idx) != j) { |
| visited(idx) = j; |
| ++TotNz; |
| } |
| } |
| } |
| // Reserve place for A + At |
| m_indexPtr.resize(m + 1); |
| m_innerIndices.resize(TotNz); |
| |
| // Now compute the real adjacency list of each column/row |
| visited.setConstant(-1); |
| StorageIndex CurNz = 0; |
| for (StorageIndex j = 0; j < m; j++) { |
| m_indexPtr(j) = CurNz; |
| |
| visited(j) = j; // Do not include the diagonal element |
| // Add the pattern of row/column j of A to A+At |
| for (typename MatrixType::InnerIterator it(A, j); it; ++it) { |
| StorageIndex idx = it.index(); // Get the row index (for column major) or column index (for row major) |
| if (visited(idx) != j) { |
| visited(idx) = j; |
| m_innerIndices(CurNz) = idx; |
| CurNz++; |
| } |
| } |
| // Add the pattern of row/column j of At to A+At |
| for (typename MatrixType::InnerIterator it(At, j); it; ++it) { |
| StorageIndex idx = it.index(); |
| if (visited(idx) != j) { |
| visited(idx) = j; |
| m_innerIndices(CurNz) = idx; |
| ++CurNz; |
| } |
| } |
| } |
| m_indexPtr(m) = CurNz; |
| } |
| |
| template <typename MatrixType> |
| void operator()(const MatrixType& A, PermutationType& matperm) { |
| StorageIndex m = internal::convert_index<StorageIndex>( |
| A.cols()); // must be StorageIndex, because it is passed by address to METIS |
| IndexVector perm(m), iperm(m); |
| // First, symmetrize the matrix graph. |
| get_symmetrized_graph(A); |
| int output_error; |
| |
| // Call the fill-reducing routine from METIS |
| output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data()); |
| |
| if (output_error != METIS_OK) { |
| // FIXME The ordering interface should define a class of possible errors |
| std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n"; |
| return; |
| } |
| |
| // Get the fill-reducing permutation |
| // NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows |
| // Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap |
| |
| matperm.resize(m); |
| for (int j = 0; j < m; j++) matperm.indices()(iperm(j)) = j; |
| } |
| |
| protected: |
| IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column |
| IndexVector m_innerIndices; // Adjacency list |
| }; |
| |
| } // namespace Eigen |
| #endif |