| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BIDIAGONALIZATION_H |
| #define EIGEN_BIDIAGONALIZATION_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API. |
| // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class. |
| |
| template <typename MatrixType_> |
| class UpperBidiagonalization { |
| public: |
| typedef MatrixType_ MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType; |
| typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; |
| typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType; |
| typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType; |
| typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType; |
| typedef HouseholderSequence< |
| const MatrixType, const internal::remove_all_t<typename Diagonal<const MatrixType, 0>::ConjugateReturnType> > |
| HouseholderUSequenceType; |
| typedef HouseholderSequence<const internal::remove_all_t<typename MatrixType::ConjugateReturnType>, |
| Diagonal<const MatrixType, 1>, OnTheRight> |
| HouseholderVSequenceType; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via Bidiagonalization::compute(const MatrixType&). |
| */ |
| UpperBidiagonalization() : m_householder(), m_bidiagonal(0, 0), m_isInitialized(false) {} |
| |
| explicit UpperBidiagonalization(const MatrixType& matrix) |
| : m_householder(matrix.rows(), matrix.cols()), |
| m_bidiagonal(matrix.cols(), matrix.cols()), |
| m_isInitialized(false) { |
| compute(matrix); |
| } |
| |
| UpperBidiagonalization(Index rows, Index cols) |
| : m_householder(rows, cols), m_bidiagonal(cols, cols), m_isInitialized(false) {} |
| |
| UpperBidiagonalization& compute(const MatrixType& matrix); |
| UpperBidiagonalization& computeUnblocked(const MatrixType& matrix); |
| |
| const MatrixType& householder() const { return m_householder; } |
| const BidiagonalType& bidiagonal() const { return m_bidiagonal; } |
| |
| const HouseholderUSequenceType householderU() const { |
| eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); |
| return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); |
| } |
| |
| const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy |
| { |
| eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); |
| return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) |
| .setLength(m_householder.cols() - 1) |
| .setShift(1); |
| } |
| |
| protected: |
| MatrixType m_householder; |
| BidiagonalType m_bidiagonal; |
| bool m_isInitialized; |
| }; |
| |
| // Standard upper bidiagonalization without fancy optimizations |
| // This version should be faster for small matrix size |
| template <typename MatrixType> |
| void upperbidiagonalization_inplace_unblocked(MatrixType& mat, typename MatrixType::RealScalar* diagonal, |
| typename MatrixType::RealScalar* upper_diagonal, |
| typename MatrixType::Scalar* tempData = 0) { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = mat.rows(); |
| Index cols = mat.cols(); |
| |
| typedef Matrix<Scalar, Dynamic, 1, ColMajor, MatrixType::MaxRowsAtCompileTime, 1> TempType; |
| TempType tempVector; |
| if (tempData == 0) { |
| tempVector.resize(rows); |
| tempData = tempVector.data(); |
| } |
| |
| for (Index k = 0; /* breaks at k==cols-1 below */; ++k) { |
| Index remainingRows = rows - k; |
| Index remainingCols = cols - k - 1; |
| |
| // construct left householder transform in-place in A |
| mat.col(k).tail(remainingRows).makeHouseholderInPlace(mat.coeffRef(k, k), diagonal[k]); |
| // apply householder transform to remaining part of A on the left |
| mat.bottomRightCorner(remainingRows, remainingCols) |
| .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows - 1), mat.coeff(k, k), tempData); |
| |
| if (k == cols - 1) break; |
| |
| // construct right householder transform in-place in mat |
| mat.row(k).tail(remainingCols).makeHouseholderInPlace(mat.coeffRef(k, k + 1), upper_diagonal[k]); |
| // apply householder transform to remaining part of mat on the left |
| mat.bottomRightCorner(remainingRows - 1, remainingCols) |
| .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols - 1).adjoint(), mat.coeff(k, k + 1), tempData); |
| } |
| } |
| |
| /** \internal |
| * Helper routine for the block reduction to upper bidiagonal form. |
| * |
| * Let's partition the matrix A: |
| * |
| * | A00 A01 | |
| * A = | | |
| * | A10 A11 | |
| * |
| * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10] |
| * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11 |
| * is updated using matrix-matrix products: |
| * A22 -= V * Y^T - X * U^T |
| * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01 |
| * respectively, and the update matrices X and Y are computed during the reduction. |
| * |
| */ |
| template <typename MatrixType> |
| void upperbidiagonalization_blocked_helper( |
| MatrixType& A, typename MatrixType::RealScalar* diagonal, typename MatrixType::RealScalar* upper_diagonal, Index bs, |
| Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, traits<MatrixType>::Flags & RowMajorBit> > X, |
| Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, traits<MatrixType>::Flags & RowMajorBit> > Y) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename NumTraits<RealScalar>::Literal Literal; |
| static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor; |
| typedef InnerStride<StorageOrder == ColMajor ? 1 : Dynamic> ColInnerStride; |
| typedef InnerStride<StorageOrder == ColMajor ? Dynamic : 1> RowInnerStride; |
| typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType; |
| typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType; |
| typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > SubMatType; |
| |
| Index brows = A.rows(); |
| Index bcols = A.cols(); |
| |
| Scalar tau_u, tau_u_prev(0), tau_v; |
| |
| for (Index k = 0; k < bs; ++k) { |
| Index remainingRows = brows - k; |
| Index remainingCols = bcols - k - 1; |
| |
| SubMatType X_k1(X.block(k, 0, remainingRows, k)); |
| SubMatType V_k1(A.block(k, 0, remainingRows, k)); |
| |
| // 1 - update the k-th column of A |
| SubColumnType v_k = A.col(k).tail(remainingRows); |
| v_k -= V_k1 * Y.row(k).head(k).adjoint(); |
| if (k) v_k -= X_k1 * A.col(k).head(k); |
| |
| // 2 - construct left Householder transform in-place |
| v_k.makeHouseholderInPlace(tau_v, diagonal[k]); |
| |
| if (k + 1 < bcols) { |
| SubMatType Y_k(Y.block(k + 1, 0, remainingCols, k + 1)); |
| SubMatType U_k1(A.block(0, k + 1, k, remainingCols)); |
| |
| // this eases the application of Householder transforAions |
| // A(k,k) will store tau_v later |
| A(k, k) = Scalar(1); |
| |
| // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k ) |
| { |
| SubColumnType y_k(Y.col(k).tail(remainingCols)); |
| |
| // let's use the beginning of column k of Y as a temporary vector |
| SubColumnType tmp(Y.col(k).head(k)); |
| y_k.noalias() = A.block(k, k + 1, remainingRows, remainingCols).adjoint() * v_k; // bottleneck |
| tmp.noalias() = V_k1.adjoint() * v_k; |
| y_k.noalias() -= Y_k.leftCols(k) * tmp; |
| tmp.noalias() = X_k1.adjoint() * v_k; |
| y_k.noalias() -= U_k1.adjoint() * tmp; |
| y_k *= numext::conj(tau_v); |
| } |
| |
| // 4 - update k-th row of A (it will become u_k) |
| SubRowType u_k(A.row(k).tail(remainingCols)); |
| u_k = u_k.conjugate(); |
| { |
| u_k -= Y_k * A.row(k).head(k + 1).adjoint(); |
| if (k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint(); |
| } |
| |
| // 5 - construct right Householder transform in-place |
| u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]); |
| |
| // this eases the application of Householder transformations |
| // A(k,k+1) will store tau_u later |
| A(k, k + 1) = Scalar(1); |
| |
| // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k ) |
| { |
| SubColumnType x_k(X.col(k).tail(remainingRows - 1)); |
| |
| // let's use the beginning of column k of X as a temporary vectors |
| // note that tmp0 and tmp1 overlaps |
| SubColumnType tmp0(X.col(k).head(k)), tmp1(X.col(k).head(k + 1)); |
| |
| x_k.noalias() = A.block(k + 1, k + 1, remainingRows - 1, remainingCols) * u_k.transpose(); // bottleneck |
| tmp0.noalias() = U_k1 * u_k.transpose(); |
| x_k.noalias() -= X_k1.bottomRows(remainingRows - 1) * tmp0; |
| tmp1.noalias() = Y_k.adjoint() * u_k.transpose(); |
| x_k.noalias() -= A.block(k + 1, 0, remainingRows - 1, k + 1) * tmp1; |
| x_k *= numext::conj(tau_u); |
| tau_u = numext::conj(tau_u); |
| u_k = u_k.conjugate(); |
| } |
| |
| if (k > 0) A.coeffRef(k - 1, k) = tau_u_prev; |
| tau_u_prev = tau_u; |
| } else |
| A.coeffRef(k - 1, k) = tau_u_prev; |
| |
| A.coeffRef(k, k) = tau_v; |
| } |
| |
| if (bs < bcols) A.coeffRef(bs - 1, bs) = tau_u_prev; |
| |
| // update A22 |
| if (bcols > bs && brows > bs) { |
| SubMatType A11(A.bottomRightCorner(brows - bs, bcols - bs)); |
| SubMatType A10(A.block(bs, 0, brows - bs, bs)); |
| SubMatType A01(A.block(0, bs, bs, bcols - bs)); |
| Scalar tmp = A01(bs - 1, 0); |
| A01(bs - 1, 0) = Literal(1); |
| A11.noalias() -= A10 * Y.topLeftCorner(bcols, bs).bottomRows(bcols - bs).adjoint(); |
| A11.noalias() -= X.topLeftCorner(brows, bs).bottomRows(brows - bs) * A01; |
| A01(bs - 1, 0) = tmp; |
| } |
| } |
| |
| /** \internal |
| * |
| * Implementation of a block-bidiagonal reduction. |
| * It is based on the following paper: |
| * The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and |
| * Bidiagonal Form. by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995) section 3.3 |
| */ |
| template <typename MatrixType, typename BidiagType> |
| void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal, Index maxBlockSize = 32, |
| typename MatrixType::Scalar* /*tempData*/ = 0) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Block<MatrixType, Dynamic, Dynamic> BlockType; |
| |
| Index rows = A.rows(); |
| Index cols = A.cols(); |
| Index size = (std::min)(rows, cols); |
| |
| // X and Y are work space |
| static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor; |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, StorageOrder, MatrixType::MaxRowsAtCompileTime> X( |
| rows, maxBlockSize); |
| Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic, StorageOrder, MatrixType::MaxColsAtCompileTime> Y( |
| cols, maxBlockSize); |
| Index blockSize = (std::min)(maxBlockSize, size); |
| |
| Index k = 0; |
| for (k = 0; k < size; k += blockSize) { |
| Index bs = (std::min)(size - k, blockSize); // actual size of the block |
| Index brows = rows - k; // rows of the block |
| Index bcols = cols - k; // columns of the block |
| |
| // partition the matrix A: |
| // |
| // | A00 A01 A02 | |
| // | | |
| // A = | A10 A11 A12 | |
| // | | |
| // | A20 A21 A22 | |
| // |
| // where A11 is a bs x bs diagonal block, |
| // and let: |
| // | A11 A12 | |
| // B = | | |
| // | A21 A22 | |
| |
| BlockType B = A.block(k, k, brows, bcols); |
| |
| // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22. |
| // Finally, the algorithm continue on the updated A22. |
| // |
| // However, if B is too small, or A22 empty, then let's use an unblocked strategy |
| |
| auto upper_diagonal = bidiagonal.template diagonal<1>(); |
| typename MatrixType::RealScalar* upper_diagonal_ptr = |
| upper_diagonal.size() > 0 ? &upper_diagonal.coeffRef(k) : nullptr; |
| |
| if (k + bs == cols || bcols < 48) // somewhat arbitrary threshold |
| { |
| upperbidiagonalization_inplace_unblocked(B, &(bidiagonal.template diagonal<0>().coeffRef(k)), upper_diagonal_ptr, |
| X.data()); |
| break; // We're done |
| } else { |
| upperbidiagonalization_blocked_helper<BlockType>(B, &(bidiagonal.template diagonal<0>().coeffRef(k)), |
| upper_diagonal_ptr, bs, X.topLeftCorner(brows, bs), |
| Y.topLeftCorner(bcols, bs)); |
| } |
| } |
| } |
| |
| template <typename MatrixType_> |
| UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::computeUnblocked(const MatrixType_& matrix) { |
| Index rows = matrix.rows(); |
| Index cols = matrix.cols(); |
| EIGEN_ONLY_USED_FOR_DEBUG(cols); |
| |
| eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); |
| |
| m_householder = matrix; |
| |
| ColVectorType temp(rows); |
| |
| upperbidiagonalization_inplace_unblocked(m_householder, &(m_bidiagonal.template diagonal<0>().coeffRef(0)), |
| &(m_bidiagonal.template diagonal<1>().coeffRef(0)), temp.data()); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| template <typename MatrixType_> |
| UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::compute(const MatrixType_& matrix) { |
| Index rows = matrix.rows(); |
| Index cols = matrix.cols(); |
| EIGEN_ONLY_USED_FOR_DEBUG(rows); |
| EIGEN_ONLY_USED_FOR_DEBUG(cols); |
| |
| eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); |
| |
| m_householder = matrix; |
| upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| #if 0 |
| /** \return the Householder QR decomposition of \c *this. |
| * |
| * \sa class Bidiagonalization |
| */ |
| template<typename Derived> |
| const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::bidiagonalization() const |
| { |
| return UpperBidiagonalization<PlainObject>(eval()); |
| } |
| #endif |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_BIDIAGONALIZATION_H |