blob: c1682833d0e88f564853277bbc18c7f25b869700 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H
#define EIGEN_SPARSE_COMPRESSED_BASE_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
template <typename Derived>
class SparseCompressedBase;
namespace internal {
template <typename Derived>
struct traits<SparseCompressedBase<Derived>> : traits<Derived> {};
template <typename Derived, class Comp, bool IsVector>
struct inner_sort_impl;
} // end namespace internal
/** \ingroup SparseCore_Module
* \class SparseCompressedBase
* \brief Common base class for sparse [compressed]-{row|column}-storage format.
*
* This class defines the common interface for all derived classes implementing the compressed sparse storage format,
* such as:
* - SparseMatrix
* - Ref<SparseMatrixType,Options>
* - Map<SparseMatrixType>
*
*/
template <typename Derived>
class SparseCompressedBase : public SparseMatrixBase<Derived> {
public:
typedef SparseMatrixBase<Derived> Base;
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase)
using Base::operator=;
using Base::IsRowMajor;
class InnerIterator;
class ReverseInnerIterator;
protected:
typedef typename Base::IndexVector IndexVector;
Eigen::Map<IndexVector> innerNonZeros() {
return Eigen::Map<IndexVector>(innerNonZeroPtr(), isCompressed() ? 0 : derived().outerSize());
}
const Eigen::Map<const IndexVector> innerNonZeros() const {
return Eigen::Map<const IndexVector>(innerNonZeroPtr(), isCompressed() ? 0 : derived().outerSize());
}
public:
/** \returns the number of non zero coefficients */
inline Index nonZeros() const {
if (Derived::IsVectorAtCompileTime && outerIndexPtr() == 0)
return derived().nonZeros();
else if (derived().outerSize() == 0)
return 0;
else if (isCompressed())
return outerIndexPtr()[derived().outerSize()] - outerIndexPtr()[0];
else
return innerNonZeros().sum();
}
/** \returns a const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline const Scalar* valuePtr() const { return derived().valuePtr(); }
/** \returns a non-const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline Scalar* valuePtr() { return derived().valuePtr(); }
/** \returns a const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); }
/** \returns a non-const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); }
/** \returns a const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 for SparseVector
* \sa valuePtr(), innerIndexPtr() */
inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); }
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 for SparseVector
* \sa valuePtr(), innerIndexPtr() */
inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); }
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); }
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); }
/** \returns whether \c *this is in compressed form. */
inline bool isCompressed() const { return innerNonZeroPtr() == 0; }
/** \returns a read-only view of the stored coefficients as a 1D array expression.
*
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
*
* \sa valuePtr(), isCompressed() */
const Map<const Array<Scalar, Dynamic, 1>> coeffs() const {
eigen_assert(isCompressed());
return Array<Scalar, Dynamic, 1>::Map(valuePtr(), nonZeros());
}
/** \returns a read-write view of the stored coefficients as a 1D array expression
*
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
*
* Here is an example:
* \include SparseMatrix_coeffs.cpp
* and the output is:
* \include SparseMatrix_coeffs.out
*
* \sa valuePtr(), isCompressed() */
Map<Array<Scalar, Dynamic, 1>> coeffs() {
eigen_assert(isCompressed());
return Array<Scalar, Dynamic, 1>::Map(valuePtr(), nonZeros());
}
/** sorts the inner vectors in the range [begin,end) with respect to `Comp`
* \sa innerIndicesAreSorted() */
template <class Comp = std::less<>>
inline void sortInnerIndices(Index begin, Index end) {
eigen_assert(begin >= 0 && end <= derived().outerSize() && end >= begin);
internal::inner_sort_impl<Derived, Comp, IsVectorAtCompileTime>::run(*this, begin, end);
}
/** \returns the index of the first inner vector in the range [begin,end) that is not sorted with respect to `Comp`,
* or `end` if the range is fully sorted \sa sortInnerIndices() */
template <class Comp = std::less<>>
inline Index innerIndicesAreSorted(Index begin, Index end) const {
eigen_assert(begin >= 0 && end <= derived().outerSize() && end >= begin);
return internal::inner_sort_impl<Derived, Comp, IsVectorAtCompileTime>::check(*this, begin, end);
}
/** sorts the inner vectors in the range [0,outerSize) with respect to `Comp`
* \sa innerIndicesAreSorted() */
template <class Comp = std::less<>>
inline void sortInnerIndices() {
Index begin = 0;
Index end = derived().outerSize();
internal::inner_sort_impl<Derived, Comp, IsVectorAtCompileTime>::run(*this, begin, end);
}
/** \returns the index of the first inner vector in the range [0,outerSize) that is not sorted with respect to `Comp`,
* or `outerSize` if the range is fully sorted \sa sortInnerIndices() */
template <class Comp = std::less<>>
inline Index innerIndicesAreSorted() const {
Index begin = 0;
Index end = derived().outerSize();
return internal::inner_sort_impl<Derived, Comp, IsVectorAtCompileTime>::check(*this, begin, end);
}
protected:
/** Default constructor. Do nothing. */
SparseCompressedBase() {}
/** \internal return the index of the coeff at (row,col) or just before if it does not exist.
* This is an analogue of std::lower_bound.
*/
internal::LowerBoundIndex lower_bound(Index row, Index col) const {
eigen_internal_assert(row >= 0 && row < this->rows() && col >= 0 && col < this->cols());
const Index outer = Derived::IsRowMajor ? row : col;
const Index inner = Derived::IsRowMajor ? col : row;
Index start = this->outerIndexPtr()[outer];
Index end = this->isCompressed() ? this->outerIndexPtr()[outer + 1]
: this->outerIndexPtr()[outer] + this->innerNonZeroPtr()[outer];
eigen_assert(end >= start && "you are using a non finalized sparse matrix or written coefficient does not exist");
internal::LowerBoundIndex p;
p.value =
std::lower_bound(this->innerIndexPtr() + start, this->innerIndexPtr() + end, inner) - this->innerIndexPtr();
p.found = (p.value < end) && (this->innerIndexPtr()[p.value] == inner);
return p;
}
friend struct internal::evaluator<SparseCompressedBase<Derived>>;
private:
template <typename OtherDerived>
explicit SparseCompressedBase(const SparseCompressedBase<OtherDerived>&);
};
template <typename Derived>
class SparseCompressedBase<Derived>::InnerIterator {
public:
InnerIterator() : m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0) {}
InnerIterator(const InnerIterator& other)
: m_values(other.m_values),
m_indices(other.m_indices),
m_outer(other.m_outer),
m_id(other.m_id),
m_end(other.m_end) {}
InnerIterator& operator=(const InnerIterator& other) {
m_values = other.m_values;
m_indices = other.m_indices;
const_cast<OuterType&>(m_outer).setValue(other.m_outer.value());
m_id = other.m_id;
m_end = other.m_end;
return *this;
}
InnerIterator(const SparseCompressedBase& mat, Index outer)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) {
if (Derived::IsVectorAtCompileTime && mat.outerIndexPtr() == 0) {
m_id = 0;
m_end = mat.nonZeros();
} else {
m_id = mat.outerIndexPtr()[outer];
if (mat.isCompressed())
m_end = mat.outerIndexPtr()[outer + 1];
else
m_end = m_id + mat.innerNonZeroPtr()[outer];
}
}
explicit InnerIterator(const SparseCompressedBase& mat) : InnerIterator(mat, Index(0)) {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
explicit InnerIterator(const internal::CompressedStorage<Scalar, StorageIndex>& data)
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size()) {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
inline InnerIterator& operator++() {
m_id++;
return *this;
}
inline InnerIterator& operator+=(Index i) {
m_id += i;
return *this;
}
inline InnerIterator operator+(Index i) {
InnerIterator result = *this;
result += i;
return result;
}
inline const Scalar& value() const { return m_values[m_id]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
inline StorageIndex index() const { return m_indices[m_id]; }
inline Index outer() const { return m_outer.value(); }
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
inline operator bool() const { return (m_id < m_end); }
protected:
const Scalar* m_values;
const StorageIndex* m_indices;
typedef internal::variable_if_dynamic<Index, Derived::IsVectorAtCompileTime ? 0 : Dynamic> OuterType;
const OuterType m_outer;
Index m_id;
Index m_end;
private:
// If you get here, then you're not using the right InnerIterator type, e.g.:
// SparseMatrix<double,RowMajor> A;
// SparseMatrix<double>::InnerIterator it(A,0);
template <typename T>
InnerIterator(const SparseMatrixBase<T>&, Index outer);
};
template <typename Derived>
class SparseCompressedBase<Derived>::ReverseInnerIterator {
public:
ReverseInnerIterator(const SparseCompressedBase& mat, Index outer)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) {
if (Derived::IsVectorAtCompileTime && mat.outerIndexPtr() == 0) {
m_start = 0;
m_id = mat.nonZeros();
} else {
m_start = mat.outerIndexPtr()[outer];
if (mat.isCompressed())
m_id = mat.outerIndexPtr()[outer + 1];
else
m_id = m_start + mat.innerNonZeroPtr()[outer];
}
}
explicit ReverseInnerIterator(const SparseCompressedBase& mat)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros()) {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
explicit ReverseInnerIterator(const internal::CompressedStorage<Scalar, StorageIndex>& data)
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size()) {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
inline ReverseInnerIterator& operator--() {
--m_id;
return *this;
}
inline ReverseInnerIterator& operator-=(Index i) {
m_id -= i;
return *this;
}
inline ReverseInnerIterator operator-(Index i) {
ReverseInnerIterator result = *this;
result -= i;
return result;
}
inline const Scalar& value() const { return m_values[m_id - 1]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id - 1]); }
inline StorageIndex index() const { return m_indices[m_id - 1]; }
inline Index outer() const { return m_outer.value(); }
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
inline operator bool() const { return (m_id > m_start); }
protected:
const Scalar* m_values;
const StorageIndex* m_indices;
typedef internal::variable_if_dynamic<Index, Derived::IsVectorAtCompileTime ? 0 : Dynamic> OuterType;
const OuterType m_outer;
Index m_start;
Index m_id;
};
namespace internal {
// modified from https://artificial-mind.net/blog/2020/11/28/std-sort-multiple-ranges
template <typename Scalar, typename StorageIndex>
class StorageVal;
template <typename Scalar, typename StorageIndex>
class StorageRef;
template <typename Scalar, typename StorageIndex>
class CompressedStorageIterator;
// class to hold an index/value pair
template <typename Scalar, typename StorageIndex>
class StorageVal {
public:
StorageVal(const StorageIndex& innerIndex, const Scalar& value) : m_innerIndex(innerIndex), m_value(value) {}
StorageVal(const StorageVal& other) : m_innerIndex(other.m_innerIndex), m_value(other.m_value) {}
StorageVal(StorageVal&& other) = default;
inline const StorageIndex& key() const { return m_innerIndex; }
inline StorageIndex& key() { return m_innerIndex; }
inline const Scalar& value() const { return m_value; }
inline Scalar& value() { return m_value; }
// enables StorageVal to be compared with respect to any type that is convertible to StorageIndex
inline operator StorageIndex() const { return m_innerIndex; }
protected:
StorageIndex m_innerIndex;
Scalar m_value;
private:
StorageVal() = delete;
};
// class to hold an index/value iterator pair
// used to define assignment, swap, and comparison operators for CompressedStorageIterator
template <typename Scalar, typename StorageIndex>
class StorageRef {
public:
using value_type = StorageVal<Scalar, StorageIndex>;
// StorageRef Needs to be move-able for sort on macos.
StorageRef(StorageRef&& other) = default;
inline StorageRef& operator=(const StorageRef& other) {
key() = other.key();
value() = other.value();
return *this;
}
inline StorageRef& operator=(const value_type& other) {
key() = other.key();
value() = other.value();
return *this;
}
inline operator value_type() const { return value_type(key(), value()); }
inline friend void swap(const StorageRef& a, const StorageRef& b) {
std::iter_swap(a.keyPtr(), b.keyPtr());
std::iter_swap(a.valuePtr(), b.valuePtr());
}
inline const StorageIndex& key() const { return *m_innerIndexIterator; }
inline StorageIndex& key() { return *m_innerIndexIterator; }
inline const Scalar& value() const { return *m_valueIterator; }
inline Scalar& value() { return *m_valueIterator; }
inline StorageIndex* keyPtr() const { return m_innerIndexIterator; }
inline Scalar* valuePtr() const { return m_valueIterator; }
// enables StorageRef to be compared with respect to any type that is convertible to StorageIndex
inline operator StorageIndex() const { return *m_innerIndexIterator; }
protected:
StorageIndex* m_innerIndexIterator;
Scalar* m_valueIterator;
private:
StorageRef() = delete;
// these constructors are called by the CompressedStorageIterator constructors for convenience only
StorageRef(StorageIndex* innerIndexIterator, Scalar* valueIterator)
: m_innerIndexIterator(innerIndexIterator), m_valueIterator(valueIterator) {}
StorageRef(const StorageRef& other)
: m_innerIndexIterator(other.m_innerIndexIterator), m_valueIterator(other.m_valueIterator) {}
friend class CompressedStorageIterator<Scalar, StorageIndex>;
};
// STL-compatible iterator class that operates on inner indices and values
template <typename Scalar, typename StorageIndex>
class CompressedStorageIterator {
public:
using iterator_category = std::random_access_iterator_tag;
using reference = StorageRef<Scalar, StorageIndex>;
using difference_type = Index;
using value_type = typename reference::value_type;
using pointer = value_type*;
CompressedStorageIterator() = delete;
CompressedStorageIterator(difference_type index, StorageIndex* innerIndexPtr, Scalar* valuePtr)
: m_index(index), m_data(innerIndexPtr, valuePtr) {}
CompressedStorageIterator(difference_type index, reference data) : m_index(index), m_data(data) {}
CompressedStorageIterator(const CompressedStorageIterator& other) : m_index(other.m_index), m_data(other.m_data) {}
CompressedStorageIterator(CompressedStorageIterator&& other) = default;
inline CompressedStorageIterator& operator=(const CompressedStorageIterator& other) {
m_index = other.m_index;
m_data = other.m_data;
return *this;
}
inline CompressedStorageIterator operator+(difference_type offset) const {
return CompressedStorageIterator(m_index + offset, m_data);
}
inline CompressedStorageIterator operator-(difference_type offset) const {
return CompressedStorageIterator(m_index - offset, m_data);
}
inline difference_type operator-(const CompressedStorageIterator& other) const { return m_index - other.m_index; }
inline CompressedStorageIterator& operator++() {
++m_index;
return *this;
}
inline CompressedStorageIterator& operator--() {
--m_index;
return *this;
}
inline CompressedStorageIterator& operator+=(difference_type offset) {
m_index += offset;
return *this;
}
inline CompressedStorageIterator& operator-=(difference_type offset) {
m_index -= offset;
return *this;
}
inline reference operator*() const { return reference(m_data.keyPtr() + m_index, m_data.valuePtr() + m_index); }
#define MAKE_COMP(OP) \
inline bool operator OP(const CompressedStorageIterator& other) const { return m_index OP other.m_index; }
MAKE_COMP(<)
MAKE_COMP(>)
MAKE_COMP(>=)
MAKE_COMP(<=)
MAKE_COMP(!=)
MAKE_COMP(==)
#undef MAKE_COMP
protected:
difference_type m_index;
reference m_data;
};
template <typename Derived, class Comp, bool IsVector>
struct inner_sort_impl {
typedef typename Derived::Scalar Scalar;
typedef typename Derived::StorageIndex StorageIndex;
static inline void run(SparseCompressedBase<Derived>& obj, Index begin, Index end) {
const bool is_compressed = obj.isCompressed();
for (Index outer = begin; outer < end; outer++) {
Index begin_offset = obj.outerIndexPtr()[outer];
Index end_offset = is_compressed ? obj.outerIndexPtr()[outer + 1] : (begin_offset + obj.innerNonZeroPtr()[outer]);
CompressedStorageIterator<Scalar, StorageIndex> begin_it(begin_offset, obj.innerIndexPtr(), obj.valuePtr());
CompressedStorageIterator<Scalar, StorageIndex> end_it(end_offset, obj.innerIndexPtr(), obj.valuePtr());
std::sort(begin_it, end_it, Comp());
}
}
static inline Index check(const SparseCompressedBase<Derived>& obj, Index begin, Index end) {
const bool is_compressed = obj.isCompressed();
for (Index outer = begin; outer < end; outer++) {
Index begin_offset = obj.outerIndexPtr()[outer];
Index end_offset = is_compressed ? obj.outerIndexPtr()[outer + 1] : (begin_offset + obj.innerNonZeroPtr()[outer]);
const StorageIndex* begin_it = obj.innerIndexPtr() + begin_offset;
const StorageIndex* end_it = obj.innerIndexPtr() + end_offset;
bool is_sorted = std::is_sorted(begin_it, end_it, Comp());
if (!is_sorted) return outer;
}
return end;
}
};
template <typename Derived, class Comp>
struct inner_sort_impl<Derived, Comp, true> {
typedef typename Derived::Scalar Scalar;
typedef typename Derived::StorageIndex StorageIndex;
static inline void run(SparseCompressedBase<Derived>& obj, Index, Index) {
Index begin_offset = 0;
Index end_offset = obj.nonZeros();
CompressedStorageIterator<Scalar, StorageIndex> begin_it(begin_offset, obj.innerIndexPtr(), obj.valuePtr());
CompressedStorageIterator<Scalar, StorageIndex> end_it(end_offset, obj.innerIndexPtr(), obj.valuePtr());
std::sort(begin_it, end_it, Comp());
}
static inline Index check(const SparseCompressedBase<Derived>& obj, Index, Index) {
Index begin_offset = 0;
Index end_offset = obj.nonZeros();
const StorageIndex* begin_it = obj.innerIndexPtr() + begin_offset;
const StorageIndex* end_it = obj.innerIndexPtr() + end_offset;
return std::is_sorted(begin_it, end_it, Comp()) ? 1 : 0;
}
};
template <typename Derived>
struct evaluator<SparseCompressedBase<Derived>> : evaluator_base<Derived> {
typedef typename Derived::Scalar Scalar;
typedef typename Derived::InnerIterator InnerIterator;
enum { CoeffReadCost = NumTraits<Scalar>::ReadCost, Flags = Derived::Flags };
evaluator() : m_matrix(0), m_zero(0) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); }
explicit evaluator(const Derived& mat) : m_matrix(&mat), m_zero(0) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); }
inline Index nonZerosEstimate() const { return m_matrix->nonZeros(); }
operator Derived&() { return m_matrix->const_cast_derived(); }
operator const Derived&() const { return *m_matrix; }
typedef typename DenseCoeffsBase<Derived, ReadOnlyAccessors>::CoeffReturnType CoeffReturnType;
const Scalar& coeff(Index row, Index col) const {
Index p = find(row, col);
if (p == Dynamic)
return m_zero;
else
return m_matrix->const_cast_derived().valuePtr()[p];
}
Scalar& coeffRef(Index row, Index col) {
Index p = find(row, col);
eigen_assert(p != Dynamic && "written coefficient does not exist");
return m_matrix->const_cast_derived().valuePtr()[p];
}
protected:
Index find(Index row, Index col) const {
internal::LowerBoundIndex p = m_matrix->lower_bound(row, col);
return p.found ? p.value : Dynamic;
}
const Derived* m_matrix;
const Scalar m_zero;
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_COMPRESSED_BASE_H