blob: f040915b27777c111a7795a45820ee0fe654e694 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_DOT_H
#define EIGEN_SPARSE_DOT_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
template <typename Derived>
template <typename OtherDerived>
inline typename internal::traits<Derived>::Scalar SparseMatrixBase<Derived>::dot(
const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
EIGEN_STATIC_ASSERT(
(internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
eigen_assert(other.size() > 0 && "you are using a non initialized vector");
internal::evaluator<Derived> thisEval(derived());
typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
// Two accumulators, which breaks the dependency chain on the accumulator
// and allows more instruction-level parallelism in the following loop.
Scalar res1(0);
Scalar res2(0);
for (; i; ++i) {
res1 += numext::conj(i.value()) * other.coeff(i.index());
++i;
if (i) {
res2 += numext::conj(i.value()) * other.coeff(i.index());
}
}
return res1 + res2;
}
template <typename Derived>
template <typename OtherDerived>
inline typename internal::traits<Derived>::Scalar SparseMatrixBase<Derived>::dot(
const SparseMatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
EIGEN_STATIC_ASSERT(
(internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
internal::evaluator<Derived> thisEval(derived());
typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
internal::evaluator<OtherDerived> otherEval(other.derived());
typename internal::evaluator<OtherDerived>::InnerIterator j(otherEval, 0);
Scalar res(0);
while (i && j) {
if (i.index() == j.index()) {
res += numext::conj(i.value()) * j.value();
++i;
++j;
} else if (i.index() < j.index())
++i;
else
++j;
}
return res;
}
template <typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real SparseMatrixBase<Derived>::squaredNorm()
const {
return numext::real((*this).cwiseAbs2().sum());
}
template <typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real SparseMatrixBase<Derived>::norm() const {
using std::sqrt;
return sqrt(squaredNorm());
}
template <typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real SparseMatrixBase<Derived>::blueNorm()
const {
return internal::blueNorm_impl(*this);
}
} // end namespace Eigen
#endif // EIGEN_SPARSE_DOT_H