blob: 56f572d35608541dc6401efbbbd0b9a7e90c0e39 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_PERMUTATION_H
#define EIGEN_SPARSE_PERMUTATION_H
// This file implements sparse * permutation products
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename ExpressionType, typename PlainObjectType,
bool NeedEval = !is_same<ExpressionType, PlainObjectType>::value>
struct XprHelper {
XprHelper(const ExpressionType& xpr) : m_xpr(xpr) {}
inline const PlainObjectType& xpr() const { return m_xpr; }
// this is a new PlainObjectType initialized by xpr
const PlainObjectType m_xpr;
};
template <typename ExpressionType, typename PlainObjectType>
struct XprHelper<ExpressionType, PlainObjectType, false> {
XprHelper(const ExpressionType& xpr) : m_xpr(xpr) {}
inline const PlainObjectType& xpr() const { return m_xpr; }
// this is a reference to xpr
const PlainObjectType& m_xpr;
};
template <typename PermDerived, bool NeedInverseEval>
struct PermHelper {
using IndicesType = typename PermDerived::IndicesType;
using PermutationIndex = typename IndicesType::Scalar;
using type = PermutationMatrix<IndicesType::SizeAtCompileTime, IndicesType::MaxSizeAtCompileTime, PermutationIndex>;
PermHelper(const PermDerived& perm) : m_perm(perm.inverse()) {}
inline const type& perm() const { return m_perm; }
// this is a new PermutationMatrix initialized by perm.inverse()
const type m_perm;
};
template <typename PermDerived>
struct PermHelper<PermDerived, false> {
using type = PermDerived;
PermHelper(const PermDerived& perm) : m_perm(perm) {}
inline const type& perm() const { return m_perm; }
// this is a reference to perm
const type& m_perm;
};
template <typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, SparseShape> {
using MatrixType = typename nested_eval<ExpressionType, 1>::type;
using MatrixTypeCleaned = remove_all_t<MatrixType>;
using Scalar = typename MatrixTypeCleaned::Scalar;
using StorageIndex = typename MatrixTypeCleaned::StorageIndex;
// the actual "return type" is `Dest`. this is a temporary type
using ReturnType = SparseMatrix<Scalar, MatrixTypeCleaned::IsRowMajor ? RowMajor : ColMajor, StorageIndex>;
using TmpHelper = XprHelper<ExpressionType, ReturnType>;
static constexpr bool NeedOuterPermutation = ExpressionType::IsRowMajor ? Side == OnTheLeft : Side == OnTheRight;
static constexpr bool NeedInversePermutation = Transposed ? Side == OnTheLeft : Side == OnTheRight;
template <typename Dest, typename PermutationType>
static inline void permute_outer(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) {
// if ExpressionType is not ReturnType, evaluate `xpr` (allocation)
// otherwise, just reference `xpr`
// TODO: handle trivial expressions such as CwiseBinaryOp without temporary
const TmpHelper tmpHelper(xpr);
const ReturnType& tmp = tmpHelper.xpr();
ReturnType result(tmp.rows(), tmp.cols());
for (Index j = 0; j < tmp.outerSize(); j++) {
Index jp = perm.indices().coeff(j);
Index jsrc = NeedInversePermutation ? jp : j;
Index jdst = NeedInversePermutation ? j : jp;
Index begin = tmp.outerIndexPtr()[jsrc];
Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[jsrc + 1] : begin + tmp.innerNonZeroPtr()[jsrc];
result.outerIndexPtr()[jdst + 1] += end - begin;
}
std::partial_sum(result.outerIndexPtr(), result.outerIndexPtr() + result.outerSize() + 1, result.outerIndexPtr());
result.resizeNonZeros(result.nonZeros());
for (Index j = 0; j < tmp.outerSize(); j++) {
Index jp = perm.indices().coeff(j);
Index jsrc = NeedInversePermutation ? jp : j;
Index jdst = NeedInversePermutation ? j : jp;
Index begin = tmp.outerIndexPtr()[jsrc];
Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[jsrc + 1] : begin + tmp.innerNonZeroPtr()[jsrc];
Index target = result.outerIndexPtr()[jdst];
smart_copy(tmp.innerIndexPtr() + begin, tmp.innerIndexPtr() + end, result.innerIndexPtr() + target);
smart_copy(tmp.valuePtr() + begin, tmp.valuePtr() + end, result.valuePtr() + target);
}
dst = std::move(result);
}
template <typename Dest, typename PermutationType>
static inline void permute_inner(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) {
using InnerPermHelper = PermHelper<PermutationType, NeedInversePermutation>;
using InnerPermType = typename InnerPermHelper::type;
// if ExpressionType is not ReturnType, evaluate `xpr` (allocation)
// otherwise, just reference `xpr`
// TODO: handle trivial expressions such as CwiseBinaryOp without temporary
const TmpHelper tmpHelper(xpr);
const ReturnType& tmp = tmpHelper.xpr();
// if inverse permutation of inner indices is requested, calculate perm.inverse() (allocation)
// otherwise, just reference `perm`
const InnerPermHelper permHelper(perm);
const InnerPermType& innerPerm = permHelper.perm();
ReturnType result(tmp.rows(), tmp.cols());
for (Index j = 0; j < tmp.outerSize(); j++) {
Index begin = tmp.outerIndexPtr()[j];
Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[j + 1] : begin + tmp.innerNonZeroPtr()[j];
result.outerIndexPtr()[j + 1] += end - begin;
}
std::partial_sum(result.outerIndexPtr(), result.outerIndexPtr() + result.outerSize() + 1, result.outerIndexPtr());
result.resizeNonZeros(result.nonZeros());
for (Index j = 0; j < tmp.outerSize(); j++) {
Index begin = tmp.outerIndexPtr()[j];
Index end = tmp.isCompressed() ? tmp.outerIndexPtr()[j + 1] : begin + tmp.innerNonZeroPtr()[j];
Index target = result.outerIndexPtr()[j];
std::transform(tmp.innerIndexPtr() + begin, tmp.innerIndexPtr() + end, result.innerIndexPtr() + target,
[&innerPerm](StorageIndex i) { return innerPerm.indices().coeff(i); });
smart_copy(tmp.valuePtr() + begin, tmp.valuePtr() + end, result.valuePtr() + target);
}
// the inner indices were permuted, and must be sorted
result.sortInnerIndices();
dst = std::move(result);
}
template <typename Dest, typename PermutationType, bool DoOuter = NeedOuterPermutation,
std::enable_if_t<DoOuter, int> = 0>
static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) {
permute_outer(dst, perm, xpr);
}
template <typename Dest, typename PermutationType, bool DoOuter = NeedOuterPermutation,
std::enable_if_t<!DoOuter, int> = 0>
static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) {
permute_inner(dst, perm, xpr);
}
};
} // namespace internal
namespace internal {
template <int ProductTag>
struct product_promote_storage_type<Sparse, PermutationStorage, ProductTag> {
typedef Sparse ret;
};
template <int ProductTag>
struct product_promote_storage_type<PermutationStorage, Sparse, ProductTag> {
typedef Sparse ret;
};
// TODO, the following two overloads are only needed to define the right temporary type through
// typename traits<permutation_sparse_matrix_product<Rhs,Lhs,OnTheRight,false> >::ReturnType
// whereas it should be correctly handled by traits<Product<> >::PlainObject
template <typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, PermutationShape, SparseShape>
: public evaluator<typename permutation_matrix_product<Rhs, OnTheLeft, false, SparseShape>::ReturnType> {
typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
typedef typename permutation_matrix_product<Rhs, OnTheLeft, false, SparseShape>::ReturnType PlainObject;
typedef evaluator<PlainObject> Base;
enum { Flags = Base::Flags | EvalBeforeNestingBit };
explicit product_evaluator(const XprType& xpr) : m_result(xpr.rows(), xpr.cols()) {
internal::construct_at<Base>(this, m_result);
generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
}
protected:
PlainObject m_result;
};
template <typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, SparseShape, PermutationShape>
: public evaluator<typename permutation_matrix_product<Lhs, OnTheRight, false, SparseShape>::ReturnType> {
typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
typedef typename permutation_matrix_product<Lhs, OnTheRight, false, SparseShape>::ReturnType PlainObject;
typedef evaluator<PlainObject> Base;
enum { Flags = Base::Flags | EvalBeforeNestingBit };
explicit product_evaluator(const XprType& xpr) : m_result(xpr.rows(), xpr.cols()) {
::new (static_cast<Base*>(this)) Base(m_result);
generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
}
protected:
PlainObject m_result;
};
} // end namespace internal
/** \returns the matrix with the permutation applied to the columns
*/
template <typename SparseDerived, typename PermDerived>
inline const Product<SparseDerived, PermDerived, AliasFreeProduct> operator*(
const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm) {
return Product<SparseDerived, PermDerived, AliasFreeProduct>(matrix.derived(), perm.derived());
}
/** \returns the matrix with the permutation applied to the rows
*/
template <typename SparseDerived, typename PermDerived>
inline const Product<PermDerived, SparseDerived, AliasFreeProduct> operator*(
const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix) {
return Product<PermDerived, SparseDerived, AliasFreeProduct>(perm.derived(), matrix.derived());
}
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template <typename SparseDerived, typename PermutationType>
inline const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct> operator*(
const SparseMatrixBase<SparseDerived>& matrix, const InverseImpl<PermutationType, PermutationStorage>& tperm) {
return Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>(matrix.derived(), tperm.derived());
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template <typename SparseDerived, typename PermutationType>
inline const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct> operator*(
const InverseImpl<PermutationType, PermutationStorage>& tperm, const SparseMatrixBase<SparseDerived>& matrix) {
return Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived());
}
} // end namespace Eigen
#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H