| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H |
| #define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // perform a pseudo in-place sparse * sparse product assuming all matrices are col major |
| template <typename Lhs, typename Rhs, typename ResultType> |
| static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, |
| const typename ResultType::RealScalar& tolerance) { |
| // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res); |
| |
| typedef typename remove_all_t<Rhs>::Scalar RhsScalar; |
| typedef typename remove_all_t<ResultType>::Scalar ResScalar; |
| typedef typename remove_all_t<Lhs>::StorageIndex StorageIndex; |
| |
| // make sure to call innerSize/outerSize since we fake the storage order. |
| Index rows = lhs.innerSize(); |
| Index cols = rhs.outerSize(); |
| // Index size = lhs.outerSize(); |
| eigen_assert(lhs.outerSize() == rhs.innerSize()); |
| |
| // allocate a temporary buffer |
| AmbiVector<ResScalar, StorageIndex> tempVector(rows); |
| |
| // mimics a resizeByInnerOuter: |
| if (ResultType::IsRowMajor) |
| res.resize(cols, rows); |
| else |
| res.resize(rows, cols); |
| |
| evaluator<Lhs> lhsEval(lhs); |
| evaluator<Rhs> rhsEval(rhs); |
| |
| // estimate the number of non zero entries |
| // given a rhs column containing Y non zeros, we assume that the respective Y columns |
| // of the lhs differs in average of one non zeros, thus the number of non zeros for |
| // the product of a rhs column with the lhs is X+Y where X is the average number of non zero |
| // per column of the lhs. |
| // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) |
| Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); |
| |
| res.reserve(estimated_nnz_prod); |
| double ratioColRes = double(estimated_nnz_prod) / (double(lhs.rows()) * double(rhs.cols())); |
| for (Index j = 0; j < cols; ++j) { |
| // FIXME: |
| // double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + |
| // double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows()); |
| // let's do a more accurate determination of the nnz ratio for the current column j of res |
| tempVector.init(ratioColRes); |
| tempVector.setZero(); |
| for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) { |
| // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index()) |
| tempVector.restart(); |
| RhsScalar x = rhsIt.value(); |
| for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt) { |
| tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x; |
| } |
| } |
| res.startVec(j); |
| for (typename AmbiVector<ResScalar, StorageIndex>::Iterator it(tempVector, tolerance); it; ++it) |
| res.insertBackByOuterInner(j, it.index()) = it.value(); |
| } |
| res.finalize(); |
| } |
| |
| template <typename Lhs, typename Rhs, typename ResultType, int LhsStorageOrder = traits<Lhs>::Flags & RowMajorBit, |
| int RhsStorageOrder = traits<Rhs>::Flags & RowMajorBit, |
| int ResStorageOrder = traits<ResultType>::Flags & RowMajorBit> |
| struct sparse_sparse_product_with_pruning_selector; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, ColMajor, ColMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| remove_all_t<ResultType> res_(res.rows(), res.cols()); |
| internal::sparse_sparse_product_with_pruning_impl<Lhs, Rhs, ResultType>(lhs, rhs, res_, tolerance); |
| res.swap(res_); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, ColMajor, RowMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| // we need a col-major matrix to hold the result |
| typedef SparseMatrix<typename ResultType::Scalar, ColMajor, typename ResultType::StorageIndex> SparseTemporaryType; |
| SparseTemporaryType res_(res.rows(), res.cols()); |
| internal::sparse_sparse_product_with_pruning_impl<Lhs, Rhs, SparseTemporaryType>(lhs, rhs, res_, tolerance); |
| res = res_; |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, RowMajor, RowMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| // let's transpose the product to get a column x column product |
| remove_all_t<ResultType> res_(res.rows(), res.cols()); |
| internal::sparse_sparse_product_with_pruning_impl<Rhs, Lhs, ResultType>(rhs, lhs, res_, tolerance); |
| res.swap(res_); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, RowMajor, ColMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| typedef SparseMatrix<typename Lhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixLhs; |
| typedef SparseMatrix<typename Rhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixRhs; |
| ColMajorMatrixLhs colLhs(lhs); |
| ColMajorMatrixRhs colRhs(rhs); |
| internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs, ColMajorMatrixRhs, ResultType>(colLhs, colRhs, |
| res, tolerance); |
| |
| // let's transpose the product to get a column x column product |
| // typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType; |
| // SparseTemporaryType res_(res.cols(), res.rows()); |
| // sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, res_); |
| // res = res_.transpose(); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, RowMajor, RowMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| typedef SparseMatrix<typename Lhs::Scalar, RowMajor, typename Lhs::StorageIndex> RowMajorMatrixLhs; |
| RowMajorMatrixLhs rowLhs(lhs); |
| sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs, Rhs, ResultType, RowMajor, RowMajor>(rowLhs, rhs, |
| res, tolerance); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, ColMajor, RowMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| typedef SparseMatrix<typename Rhs::Scalar, RowMajor, typename Lhs::StorageIndex> RowMajorMatrixRhs; |
| RowMajorMatrixRhs rowRhs(rhs); |
| sparse_sparse_product_with_pruning_selector<Lhs, RowMajorMatrixRhs, ResultType, RowMajor, RowMajor, RowMajor>( |
| lhs, rowRhs, res, tolerance); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, RowMajor, ColMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| typedef SparseMatrix<typename Rhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixRhs; |
| ColMajorMatrixRhs colRhs(rhs); |
| internal::sparse_sparse_product_with_pruning_impl<Lhs, ColMajorMatrixRhs, ResultType>(lhs, colRhs, res, tolerance); |
| } |
| }; |
| |
| template <typename Lhs, typename Rhs, typename ResultType> |
| struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, ColMajor, ColMajor> { |
| typedef typename ResultType::RealScalar RealScalar; |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) { |
| typedef SparseMatrix<typename Lhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixLhs; |
| ColMajorMatrixLhs colLhs(lhs); |
| internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs, Rhs, ResultType>(colLhs, rhs, res, tolerance); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H |