blob: 6e1c9cf50746ba5693fd5aef13b342588c974306 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
template <typename Lhs, typename Rhs, typename ResultType>
static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res,
const typename ResultType::RealScalar& tolerance) {
// return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
typedef typename remove_all_t<Rhs>::Scalar RhsScalar;
typedef typename remove_all_t<ResultType>::Scalar ResScalar;
typedef typename remove_all_t<Lhs>::StorageIndex StorageIndex;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
// Index size = lhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
// allocate a temporary buffer
AmbiVector<ResScalar, StorageIndex> tempVector(rows);
// mimics a resizeByInnerOuter:
if (ResultType::IsRowMajor)
res.resize(cols, rows);
else
res.resize(rows, cols);
evaluator<Lhs> lhsEval(lhs);
evaluator<Rhs> rhsEval(rhs);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate();
res.reserve(estimated_nnz_prod);
double ratioColRes = double(estimated_nnz_prod) / (double(lhs.rows()) * double(rhs.cols()));
for (Index j = 0; j < cols; ++j) {
// FIXME:
// double ratioColRes = (double(rhs.innerVector(j).nonZeros()) +
// double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows());
// let's do a more accurate determination of the nnz ratio for the current column j of res
tempVector.init(ratioColRes);
tempVector.setZero();
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) {
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
tempVector.restart();
RhsScalar x = rhsIt.value();
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt) {
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
}
res.startVec(j);
for (typename AmbiVector<ResScalar, StorageIndex>::Iterator it(tempVector, tolerance); it; ++it)
res.insertBackByOuterInner(j, it.index()) = it.value();
}
res.finalize();
}
template <typename Lhs, typename Rhs, typename ResultType, int LhsStorageOrder = traits<Lhs>::Flags & RowMajorBit,
int RhsStorageOrder = traits<Rhs>::Flags & RowMajorBit,
int ResStorageOrder = traits<ResultType>::Flags & RowMajorBit>
struct sparse_sparse_product_with_pruning_selector;
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, ColMajor, ColMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
remove_all_t<ResultType> res_(res.rows(), res.cols());
internal::sparse_sparse_product_with_pruning_impl<Lhs, Rhs, ResultType>(lhs, rhs, res_, tolerance);
res.swap(res_);
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, ColMajor, RowMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
// we need a col-major matrix to hold the result
typedef SparseMatrix<typename ResultType::Scalar, ColMajor, typename ResultType::StorageIndex> SparseTemporaryType;
SparseTemporaryType res_(res.rows(), res.cols());
internal::sparse_sparse_product_with_pruning_impl<Lhs, Rhs, SparseTemporaryType>(lhs, rhs, res_, tolerance);
res = res_;
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, RowMajor, RowMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
// let's transpose the product to get a column x column product
remove_all_t<ResultType> res_(res.rows(), res.cols());
internal::sparse_sparse_product_with_pruning_impl<Rhs, Lhs, ResultType>(rhs, lhs, res_, tolerance);
res.swap(res_);
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, RowMajor, ColMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
typedef SparseMatrix<typename Lhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixLhs;
typedef SparseMatrix<typename Rhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixRhs;
ColMajorMatrixLhs colLhs(lhs);
ColMajorMatrixRhs colRhs(rhs);
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs, ColMajorMatrixRhs, ResultType>(colLhs, colRhs,
res, tolerance);
// let's transpose the product to get a column x column product
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
// SparseTemporaryType res_(res.cols(), res.rows());
// sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, res_);
// res = res_.transpose();
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, RowMajor, RowMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
typedef SparseMatrix<typename Lhs::Scalar, RowMajor, typename Lhs::StorageIndex> RowMajorMatrixLhs;
RowMajorMatrixLhs rowLhs(lhs);
sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs, Rhs, ResultType, RowMajor, RowMajor>(rowLhs, rhs,
res, tolerance);
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, ColMajor, RowMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
typedef SparseMatrix<typename Rhs::Scalar, RowMajor, typename Lhs::StorageIndex> RowMajorMatrixRhs;
RowMajorMatrixRhs rowRhs(rhs);
sparse_sparse_product_with_pruning_selector<Lhs, RowMajorMatrixRhs, ResultType, RowMajor, RowMajor, RowMajor>(
lhs, rowRhs, res, tolerance);
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, ColMajor, RowMajor, ColMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
typedef SparseMatrix<typename Rhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixRhs;
ColMajorMatrixRhs colRhs(rhs);
internal::sparse_sparse_product_with_pruning_impl<Lhs, ColMajorMatrixRhs, ResultType>(lhs, colRhs, res, tolerance);
}
};
template <typename Lhs, typename Rhs, typename ResultType>
struct sparse_sparse_product_with_pruning_selector<Lhs, Rhs, ResultType, RowMajor, ColMajor, ColMajor> {
typedef typename ResultType::RealScalar RealScalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) {
typedef SparseMatrix<typename Lhs::Scalar, ColMajor, typename Lhs::StorageIndex> ColMajorMatrixLhs;
ColMajorMatrixLhs colLhs(lhs);
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs, Rhs, ResultType>(colLhs, rhs, res, tolerance);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H