blob: 3fdcc1fd4414d68651c75df9a866d2ac8cf372da [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMFPACKSUPPORT_H
#define EIGEN_UMFPACKSUPPORT_H
// for compatibility with super old version of umfpack,
// not sure this is really needed, but this is harmless.
#ifndef SuiteSparse_long
#ifdef UF_long
#define SuiteSparse_long UF_long
#else
#error neither SuiteSparse_long nor UF_long are defined
#endif
#endif
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/* TODO extract L, extract U, compute det, etc... */
// generic double/complex<double> wrapper functions:
// Defaults
inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, int) { umfpack_di_defaults(control); }
inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, int) {
umfpack_zi_defaults(control);
}
inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, SuiteSparse_long) {
umfpack_dl_defaults(control);
}
inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) {
umfpack_zl_defaults(control);
}
// Report info
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int) {
umfpack_di_report_info(control, info);
}
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, int) {
umfpack_zi_report_info(control, info);
}
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long) {
umfpack_dl_report_info(control, info);
}
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>,
SuiteSparse_long) {
umfpack_zl_report_info(control, info);
}
// Report status
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, int) {
umfpack_di_report_status(control, status);
}
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, int) {
umfpack_zi_report_status(control, status);
}
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long) {
umfpack_dl_report_status(control, status);
}
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, SuiteSparse_long) {
umfpack_zl_report_status(control, status);
}
// report control
inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, int) { umfpack_di_report_control(control); }
inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, int) {
umfpack_zi_report_control(control);
}
inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, SuiteSparse_long) {
umfpack_dl_report_control(control);
}
inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) {
umfpack_zl_report_control(control);
}
// Free numeric
inline void umfpack_free_numeric(void **Numeric, double, int) {
umfpack_di_free_numeric(Numeric);
*Numeric = 0;
}
inline void umfpack_free_numeric(void **Numeric, std::complex<double>, int) {
umfpack_zi_free_numeric(Numeric);
*Numeric = 0;
}
inline void umfpack_free_numeric(void **Numeric, double, SuiteSparse_long) {
umfpack_dl_free_numeric(Numeric);
*Numeric = 0;
}
inline void umfpack_free_numeric(void **Numeric, std::complex<double>, SuiteSparse_long) {
umfpack_zl_free_numeric(Numeric);
*Numeric = 0;
}
// Free symbolic
inline void umfpack_free_symbolic(void **Symbolic, double, int) {
umfpack_di_free_symbolic(Symbolic);
*Symbolic = 0;
}
inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, int) {
umfpack_zi_free_symbolic(Symbolic);
*Symbolic = 0;
}
inline void umfpack_free_symbolic(void **Symbolic, double, SuiteSparse_long) {
umfpack_dl_free_symbolic(Symbolic);
*Symbolic = 0;
}
inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, SuiteSparse_long) {
umfpack_zl_free_symbolic(Symbolic);
*Symbolic = 0;
}
// Symbolic
inline int umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_di_symbolic(n_row, n_col, Ap, Ai, Ax, Symbolic, Control, Info);
}
inline int umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const std::complex<double> Ax[],
void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_zi_symbolic(n_row, n_col, Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Control, Info);
}
inline SuiteSparse_long umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[], const double Ax[], void **Symbolic,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_dl_symbolic(n_row, n_col, Ap, Ai, Ax, Symbolic, Control, Info);
}
inline SuiteSparse_long umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[], const std::complex<double> Ax[], void **Symbolic,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_zl_symbolic(n_row, n_col, Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Control, Info);
}
// Numeric
inline int umfpack_numeric(const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_di_numeric(Ap, Ai, Ax, Symbolic, Numeric, Control, Info);
}
inline int umfpack_numeric(const int Ap[], const int Ai[], const std::complex<double> Ax[], void *Symbolic,
void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_zi_numeric(Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Numeric, Control, Info);
}
inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[],
void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]) {
return umfpack_dl_numeric(Ap, Ai, Ax, Symbolic, Numeric, Control, Info);
}
inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[],
const std::complex<double> Ax[], void *Symbolic, void **Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_zl_numeric(Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Numeric, Control, Info);
}
// solve
inline int umfpack_solve(int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[],
void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_di_solve(sys, Ap, Ai, Ax, X, B, Numeric, Control, Info);
}
inline int umfpack_solve(int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
std::complex<double> X[], const std::complex<double> B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_zi_solve(sys, Ap, Ai, &numext::real_ref(Ax[0]), 0, &numext::real_ref(X[0]), 0, &numext::real_ref(B[0]),
0, Numeric, Control, Info);
}
inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[],
const double Ax[], double X[], const double B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_dl_solve(sys, Ap, Ai, Ax, X, B, Numeric, Control, Info);
}
inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[],
const std::complex<double> Ax[], std::complex<double> X[],
const std::complex<double> B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) {
return umfpack_zl_solve(sys, Ap, Ai, &numext::real_ref(Ax[0]), 0, &numext::real_ref(X[0]), 0, &numext::real_ref(B[0]),
0, Numeric, Control, Info);
}
// Get Lunz
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) {
return umfpack_di_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric);
}
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric,
std::complex<double>) {
return umfpack_zi_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric);
}
inline SuiteSparse_long umfpack_get_lunz(SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row,
SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, double) {
return umfpack_dl_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric);
}
inline SuiteSparse_long umfpack_get_lunz(SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row,
SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric,
std::complex<double>) {
return umfpack_zl_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric);
}
// Get Numeric
inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[],
double Dx[], int *do_recip, double Rs[], void *Numeric) {
return umfpack_di_get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, do_recip, Rs, Numeric);
}
inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[],
std::complex<double> Ux[], int P[], int Q[], std::complex<double> Dx[], int *do_recip,
double Rs[], void *Numeric) {
double &lx0_real = numext::real_ref(Lx[0]);
double &ux0_real = numext::real_ref(Ux[0]);
double &dx0_real = numext::real_ref(Dx[0]);
return umfpack_zi_get_numeric(Lp, Lj, Lx ? &lx0_real : 0, 0, Up, Ui, Ux ? &ux0_real : 0, 0, P, Q, Dx ? &dx0_real : 0,
0, do_recip, Rs, Numeric);
}
inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[],
SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[],
SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[],
SuiteSparse_long *do_recip, double Rs[], void *Numeric) {
return umfpack_dl_get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, do_recip, Rs, Numeric);
}
inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex<double> Lx[],
SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex<double> Ux[],
SuiteSparse_long P[], SuiteSparse_long Q[], std::complex<double> Dx[],
SuiteSparse_long *do_recip, double Rs[], void *Numeric) {
double &lx0_real = numext::real_ref(Lx[0]);
double &ux0_real = numext::real_ref(Ux[0]);
double &dx0_real = numext::real_ref(Dx[0]);
return umfpack_zl_get_numeric(Lp, Lj, Lx ? &lx0_real : 0, 0, Up, Ui, Ux ? &ux0_real : 0, 0, P, Q, Dx ? &dx0_real : 0,
0, do_recip, Rs, Numeric);
}
// Get Determinant
inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int) {
return umfpack_di_get_determinant(Mx, Ex, NumericHandle, User_Info);
}
inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle,
double User_Info[UMFPACK_INFO], int) {
double &mx_real = numext::real_ref(*Mx);
return umfpack_zi_get_determinant(&mx_real, 0, Ex, NumericHandle, User_Info);
}
inline SuiteSparse_long umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle,
double User_Info[UMFPACK_INFO], SuiteSparse_long) {
return umfpack_dl_get_determinant(Mx, Ex, NumericHandle, User_Info);
}
inline SuiteSparse_long umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle,
double User_Info[UMFPACK_INFO], SuiteSparse_long) {
double &mx_real = numext::real_ref(*Mx);
return umfpack_zl_get_determinant(&mx_real, 0, Ex, NumericHandle, User_Info);
}
/** \ingroup UmfPackSupport_Module
* \brief A sparse LU factorization and solver based on UmfPack
*
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
* using the UmfPack library. The sparse matrix A must be squared and full rank.
* The vectors or matrices X and B can be either dense or sparse.
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept, class SparseLU
*/
template <typename MatrixType_>
class UmfPackLU : public SparseSolverBase<UmfPackLU<MatrixType_> > {
protected:
typedef SparseSolverBase<UmfPackLU<MatrixType_> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, Dynamic, 1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar> LUMatrixType;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> UmfpackMatrixType;
typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef;
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
public:
typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl;
typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo;
UmfPackLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); }
template <typename InputMatrixType>
explicit UmfPackLU(const InputMatrixType &matrix) : mp_matrix(matrix) {
init();
compute(matrix);
}
~UmfPackLU() {
if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex());
if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex());
}
inline Index rows() const { return mp_matrix.rows(); }
inline Index cols() const { return mp_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const {
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
inline const LUMatrixType &matrixL() const {
if (m_extractedDataAreDirty) extractData();
return m_l;
}
inline const LUMatrixType &matrixU() const {
if (m_extractedDataAreDirty) extractData();
return m_u;
}
inline const IntColVectorType &permutationP() const {
if (m_extractedDataAreDirty) extractData();
return m_p;
}
inline const IntRowVectorType &permutationQ() const {
if (m_extractedDataAreDirty) extractData();
return m_q;
}
/** Computes the sparse Cholesky decomposition of \a matrix
* Note that the matrix should be column-major, and in compressed format for best performance.
* \sa SparseMatrix::makeCompressed().
*/
template <typename InputMatrixType>
void compute(const InputMatrixType &matrix) {
if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex());
if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex());
grab(matrix.derived());
analyzePattern_impl();
factorize_impl();
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize(), compute()
*/
template <typename InputMatrixType>
void analyzePattern(const InputMatrixType &matrix) {
if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex());
if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex());
grab(matrix.derived());
analyzePattern_impl();
}
/** Provides the return status code returned by UmfPack during the numeric
* factorization.
*
* \sa factorize(), compute()
*/
inline int umfpackFactorizeReturncode() const {
eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()");
return m_fact_errorCode;
}
/** Provides access to the control settings array used by UmfPack.
*
* If this array contains NaN's, the default values are used.
*
* See UMFPACK documentation for details.
*/
inline const UmfpackControl &umfpackControl() const { return m_control; }
/** Provides access to the control settings array used by UmfPack.
*
* If this array contains NaN's, the default values are used.
*
* See UMFPACK documentation for details.
*/
inline UmfpackControl &umfpackControl() { return m_control; }
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
*
* \sa analyzePattern(), compute()
*/
template <typename InputMatrixType>
void factorize(const InputMatrixType &matrix) {
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex());
grab(matrix.derived());
factorize_impl();
}
/** Prints the current UmfPack control settings.
*
* \sa umfpackControl()
*/
void printUmfpackControl() { umfpack_report_control(m_control.data(), Scalar(), StorageIndex()); }
/** Prints statistics collected by UmfPack.
*
* \sa analyzePattern(), compute()
*/
void printUmfpackInfo() {
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar(), StorageIndex());
}
/** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical
* factorization).
*
* \sa analyzePattern(), compute()
*/
void printUmfpackStatus() {
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar(), StorageIndex());
}
/** \internal */
template <typename BDerived, typename XDerived>
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
Scalar determinant() const;
void extractData() const;
protected:
void init() {
m_info = InvalidInput;
m_isInitialized = false;
m_numeric = 0;
m_symbolic = 0;
m_extractedDataAreDirty = true;
umfpack_defaults(m_control.data(), Scalar(), StorageIndex());
}
void analyzePattern_impl() {
m_fact_errorCode = umfpack_symbolic(internal::convert_index<StorageIndex>(mp_matrix.rows()),
internal::convert_index<StorageIndex>(mp_matrix.cols()),
mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
&m_symbolic, m_control.data(), m_umfpackInfo.data());
m_isInitialized = true;
m_info = m_fact_errorCode ? InvalidInput : Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
m_extractedDataAreDirty = true;
}
void factorize_impl() {
m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data());
m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue;
m_factorizationIsOk = true;
m_extractedDataAreDirty = true;
}
template <typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &A) {
internal::destroy_at(&mp_matrix);
internal::construct_at(&mp_matrix, A.derived());
}
void grab(const UmfpackMatrixRef &A) {
if (&(A.derived()) != &mp_matrix) {
internal::destroy_at(&mp_matrix);
internal::construct_at(&mp_matrix, A);
}
}
// cached data to reduce reallocation, etc.
mutable LUMatrixType m_l;
StorageIndex m_fact_errorCode;
UmfpackControl m_control;
mutable UmfpackInfo m_umfpackInfo;
mutable LUMatrixType m_u;
mutable IntColVectorType m_p;
mutable IntRowVectorType m_q;
UmfpackMatrixType m_dummy;
UmfpackMatrixRef mp_matrix;
void *m_numeric;
void *m_symbolic;
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
private:
UmfPackLU(const UmfPackLU &) {}
};
template <typename MatrixType>
void UmfPackLU<MatrixType>::extractData() const {
if (m_extractedDataAreDirty) {
// get size of the data
StorageIndex lnz, unz, rows, cols, nz_udiag;
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
// allocate data
m_l.resize(rows, (std::min)(rows, cols));
m_l.resizeNonZeros(lnz);
m_u.resize((std::min)(rows, cols), cols);
m_u.resizeNonZeros(unz);
m_p.resize(rows);
m_q.resize(cols);
// extract
umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), m_u.outerIndexPtr(),
m_u.innerIndexPtr(), m_u.valuePtr(), m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
m_extractedDataAreDirty = false;
}
}
template <typename MatrixType>
typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const {
Scalar det;
umfpack_get_determinant(&det, 0, m_numeric, 0, StorageIndex());
return det;
}
template <typename MatrixType>
template <typename BDerived, typename XDerived>
bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const {
Index rhsCols = b.cols();
eigen_assert((BDerived::Flags & RowMajorBit) == 0 && "UmfPackLU backend does not support non col-major rhs yet");
eigen_assert((XDerived::Flags & RowMajorBit) == 0 && "UmfPackLU backend does not support non col-major result yet");
eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
Scalar *x_ptr = 0;
Matrix<Scalar, Dynamic, 1> x_tmp;
if (x.innerStride() != 1) {
x_tmp.resize(x.rows());
x_ptr = x_tmp.data();
}
for (int j = 0; j < rhsCols; ++j) {
if (x.innerStride() == 1) x_ptr = &x.col(j).coeffRef(0);
StorageIndex errorCode =
umfpack_solve(UMFPACK_A, mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), x_ptr,
&b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data());
if (x.innerStride() != 1) x.col(j) = x_tmp;
if (errorCode != 0) return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_UMFPACKSUPPORT_H