| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "quaternion_demo.h" |
| #include "icosphere.h" |
| |
| #include <Eigen/Geometry> |
| #include <Eigen/QR> |
| #include <Eigen/LU> |
| |
| #include <iostream> |
| #include <QEvent> |
| #include <QMouseEvent> |
| #include <QInputDialog> |
| #include <QGridLayout> |
| #include <QButtonGroup> |
| #include <QRadioButton> |
| #include <QDockWidget> |
| #include <QPushButton> |
| #include <QGroupBox> |
| |
| using namespace Eigen; |
| |
| class FancySpheres { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| |
| FancySpheres() { |
| const int levels = 4; |
| const float scale = 0.33; |
| float radius = 100; |
| std::vector<int> parents; |
| |
| // leval 0 |
| mCenters.push_back(Vector3f::Zero()); |
| parents.push_back(-1); |
| mRadii.push_back(radius); |
| |
| // generate level 1 using icosphere vertices |
| radius *= 0.45; |
| { |
| float dist = mRadii[0] * 0.9; |
| for (int i = 0; i < 12; ++i) { |
| mCenters.push_back(mIcoSphere.vertices()[i] * dist); |
| mRadii.push_back(radius); |
| parents.push_back(0); |
| } |
| } |
| |
| static const float angles[10] = {0, 0, M_PI, 0. * M_PI, M_PI, 0.5 * M_PI, M_PI, 1. * M_PI, M_PI, 1.5 * M_PI}; |
| |
| // generate other levels |
| int start = 1; |
| for (int l = 1; l < levels; l++) { |
| radius *= scale; |
| int end = mCenters.size(); |
| for (int i = start; i < end; ++i) { |
| Vector3f c = mCenters[i]; |
| Vector3f ax0 = (c - mCenters[parents[i]]).normalized(); |
| Vector3f ax1 = ax0.unitOrthogonal(); |
| Quaternionf q; |
| q.setFromTwoVectors(Vector3f::UnitZ(), ax0); |
| Affine3f t = Translation3f(c) * q * Scaling(mRadii[i] + radius); |
| for (int j = 0; j < 5; ++j) { |
| Vector3f newC = |
| c + ((AngleAxisf(angles[j * 2 + 1], ax0) * AngleAxisf(angles[j * 2 + 0] * (l == 1 ? 0.35 : 0.5), ax1)) * |
| ax0) * |
| (mRadii[i] + radius * 0.8); |
| mCenters.push_back(newC); |
| mRadii.push_back(radius); |
| parents.push_back(i); |
| } |
| } |
| start = end; |
| } |
| } |
| |
| void draw() { |
| int end = mCenters.size(); |
| glEnable(GL_NORMALIZE); |
| for (int i = 0; i < end; ++i) { |
| Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]); |
| gpu.pushMatrix(GL_MODELVIEW); |
| gpu.multMatrix(t.matrix(), GL_MODELVIEW); |
| mIcoSphere.draw(2); |
| gpu.popMatrix(GL_MODELVIEW); |
| } |
| glDisable(GL_NORMALIZE); |
| } |
| |
| protected: |
| std::vector<Vector3f> mCenters; |
| std::vector<float> mRadii; |
| IcoSphere mIcoSphere; |
| }; |
| |
| // generic linear interpolation method |
| template <typename T> |
| T lerp(float t, const T& a, const T& b) { |
| return a * (1 - t) + b * t; |
| } |
| |
| // quaternion slerp |
| template <> |
| Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b) { |
| return a.slerp(t, b); |
| } |
| |
| // linear interpolation of a frame using the type OrientationType |
| // to perform the interpolation of the orientations |
| template <typename OrientationType> |
| inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b) { |
| return Frame(lerp(alpha, a.position, b.position), |
| Quaternionf(lerp(alpha, OrientationType(a.orientation), OrientationType(b.orientation)))); |
| } |
| |
| template <typename Scalar_> |
| class EulerAngles { |
| public: |
| enum { Dim = 3 }; |
| typedef Scalar_ Scalar; |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Quaternion<Scalar> QuaternionType; |
| |
| protected: |
| Vector3 m_angles; |
| |
| public: |
| EulerAngles() {} |
| inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} |
| inline EulerAngles(const QuaternionType& q) { *this = q; } |
| |
| const Vector3& coeffs() const { return m_angles; } |
| Vector3& coeffs() { return m_angles; } |
| |
| EulerAngles& operator=(const QuaternionType& q) { |
| Matrix3 m = q.toRotationMatrix(); |
| return *this = m; |
| } |
| |
| EulerAngles& operator=(const Matrix3& m) { |
| // mat = cy*cz -cy*sz sy |
| // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
| // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
| m_angles.coeffRef(1) = std::asin(m.coeff(0, 2)); |
| m_angles.coeffRef(0) = std::atan2(-m.coeff(1, 2), m.coeff(2, 2)); |
| m_angles.coeffRef(2) = std::atan2(-m.coeff(0, 1), m.coeff(0, 0)); |
| return *this; |
| } |
| |
| Matrix3 toRotationMatrix(void) const { |
| Vector3 c = m_angles.array().cos(); |
| Vector3 s = m_angles.array().sin(); |
| Matrix3 res; |
| res << c.y() * c.z(), -c.y() * s.z(), s.y(), c.z() * s.x() * s.y() + c.x() * s.z(), |
| c.x() * c.z() - s.x() * s.y() * s.z(), -c.y() * s.x(), -c.x() * c.z() * s.y() + s.x() * s.z(), |
| c.z() * s.x() + c.x() * s.y() * s.z(), c.x() * c.y(); |
| return res; |
| } |
| |
| operator QuaternionType() { return QuaternionType(toRotationMatrix()); } |
| }; |
| |
| // Euler angles slerp |
| template <> |
| EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b) { |
| EulerAngles<float> res; |
| res.coeffs() = lerp(t, a.coeffs(), b.coeffs()); |
| return res; |
| } |
| |
| RenderingWidget::RenderingWidget() { |
| mAnimate = false; |
| mCurrentTrackingMode = TM_NO_TRACK; |
| mNavMode = NavTurnAround; |
| mLerpMode = LerpQuaternion; |
| mRotationMode = RotationStable; |
| mTrackball.setCamera(&mCamera); |
| |
| // required to capture key press events |
| setFocusPolicy(Qt::ClickFocus); |
| } |
| |
| void RenderingWidget::grabFrame(void) { |
| // ask user for a time |
| bool ok = false; |
| double t = 0; |
| if (!m_timeline.empty()) t = (--m_timeline.end())->first + 1.; |
| t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ", t, 0, 1e3, 1, &ok); |
| if (ok) { |
| Frame aux; |
| aux.orientation = mCamera.viewMatrix().linear(); |
| aux.position = mCamera.viewMatrix().translation(); |
| m_timeline[t] = aux; |
| } |
| } |
| |
| void RenderingWidget::drawScene() { |
| static FancySpheres sFancySpheres; |
| float length = 50; |
| gpu.drawVector(Vector3f::Zero(), length * Vector3f::UnitX(), Color(1, 0, 0, 1)); |
| gpu.drawVector(Vector3f::Zero(), length * Vector3f::UnitY(), Color(0, 1, 0, 1)); |
| gpu.drawVector(Vector3f::Zero(), length * Vector3f::UnitZ(), Color(0, 0, 1, 1)); |
| |
| // draw the fractal object |
| float sqrt3 = std::sqrt(3.); |
| glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5, 0.5, 0.5, 1).data()); |
| glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5, 1, 0.5, 1).data()); |
| glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); |
| glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3, -sqrt3, sqrt3, 0).data()); |
| |
| glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0, 0, 0, 1).data()); |
| glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1, 0.5, 0.5, 1).data()); |
| glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); |
| glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3, sqrt3, -sqrt3, 0).data()); |
| |
| glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data()); |
| glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data()); |
| glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); |
| glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64); |
| |
| glEnable(GL_LIGHTING); |
| glEnable(GL_LIGHT0); |
| glEnable(GL_LIGHT1); |
| |
| sFancySpheres.draw(); |
| glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data()); |
| glNormalPointer(GL_FLOAT, 0, mNormals[0].data()); |
| glEnableClientState(GL_VERTEX_ARRAY); |
| glEnableClientState(GL_NORMAL_ARRAY); |
| glDrawArrays(GL_TRIANGLES, 0, mVertices.size()); |
| glDisableClientState(GL_VERTEX_ARRAY); |
| glDisableClientState(GL_NORMAL_ARRAY); |
| |
| glDisable(GL_LIGHTING); |
| } |
| |
| void RenderingWidget::animate() { |
| m_alpha += double(m_timer.interval()) * 1e-3; |
| |
| TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha); |
| TimeLine::const_iterator lo = hi; |
| --lo; |
| |
| Frame currentFrame; |
| |
| if (hi == m_timeline.end()) { |
| // end |
| currentFrame = lo->second; |
| stopAnimation(); |
| } else if (hi == m_timeline.begin()) { |
| // start |
| currentFrame = hi->second; |
| } else { |
| float s = (m_alpha - lo->first) / (hi->first - lo->first); |
| if (mLerpMode == LerpEulerAngles) |
| currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second); |
| else if (mLerpMode == LerpQuaternion) |
| currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second); |
| else { |
| std::cerr << "Invalid rotation interpolation mode (abort)\n"; |
| exit(2); |
| } |
| currentFrame.orientation.coeffs().normalize(); |
| } |
| |
| currentFrame.orientation = currentFrame.orientation.inverse(); |
| currentFrame.position = -(currentFrame.orientation * currentFrame.position); |
| mCamera.setFrame(currentFrame); |
| |
| updateGL(); |
| } |
| |
| void RenderingWidget::keyPressEvent(QKeyEvent* e) { |
| switch (e->key()) { |
| case Qt::Key_Up: |
| mCamera.zoom(2); |
| break; |
| case Qt::Key_Down: |
| mCamera.zoom(-2); |
| break; |
| // add a frame |
| case Qt::Key_G: |
| grabFrame(); |
| break; |
| // clear the time line |
| case Qt::Key_C: |
| m_timeline.clear(); |
| break; |
| // move the camera to initial pos |
| case Qt::Key_R: |
| resetCamera(); |
| break; |
| // start/stop the animation |
| case Qt::Key_A: |
| if (mAnimate) { |
| stopAnimation(); |
| } else { |
| m_alpha = 0; |
| connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); |
| m_timer.start(1000 / 30); |
| mAnimate = true; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| updateGL(); |
| } |
| |
| void RenderingWidget::stopAnimation() { |
| disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); |
| m_timer.stop(); |
| mAnimate = false; |
| m_alpha = 0; |
| } |
| |
| void RenderingWidget::mousePressEvent(QMouseEvent* e) { |
| mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); |
| bool fly = (mNavMode == NavFly) || (e->modifiers() & Qt::ControlModifier); |
| switch (e->button()) { |
| case Qt::LeftButton: |
| if (fly) { |
| mCurrentTrackingMode = TM_LOCAL_ROTATE; |
| mTrackball.start(Trackball::Local); |
| } else { |
| mCurrentTrackingMode = TM_ROTATE_AROUND; |
| mTrackball.start(Trackball::Around); |
| } |
| mTrackball.track(mMouseCoords); |
| break; |
| case Qt::MidButton: |
| if (fly) |
| mCurrentTrackingMode = TM_FLY_Z; |
| else |
| mCurrentTrackingMode = TM_ZOOM; |
| break; |
| case Qt::RightButton: |
| mCurrentTrackingMode = TM_FLY_PAN; |
| break; |
| default: |
| break; |
| } |
| } |
| void RenderingWidget::mouseReleaseEvent(QMouseEvent*) { |
| mCurrentTrackingMode = TM_NO_TRACK; |
| updateGL(); |
| } |
| |
| void RenderingWidget::mouseMoveEvent(QMouseEvent* e) { |
| // tracking |
| if (mCurrentTrackingMode != TM_NO_TRACK) { |
| float dx = float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth()); |
| float dy = -float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight()); |
| |
| // speedup the transformations |
| if (e->modifiers() & Qt::ShiftModifier) { |
| dx *= 10.; |
| dy *= 10.; |
| } |
| |
| switch (mCurrentTrackingMode) { |
| case TM_ROTATE_AROUND: |
| case TM_LOCAL_ROTATE: |
| if (mRotationMode == RotationStable) { |
| // use the stable trackball implementation mapping |
| // the 2D coordinates to 3D points on a sphere. |
| mTrackball.track(Vector2i(e->pos().x(), e->pos().y())); |
| } else { |
| // standard approach mapping the x and y displacements as rotations |
| // around the camera's X and Y axes. |
| Quaternionf q = AngleAxisf(dx * M_PI, Vector3f::UnitY()) * AngleAxisf(-dy * M_PI, Vector3f::UnitX()); |
| if (mCurrentTrackingMode == TM_LOCAL_ROTATE) |
| mCamera.localRotate(q); |
| else |
| mCamera.rotateAroundTarget(q); |
| } |
| break; |
| case TM_ZOOM: |
| mCamera.zoom(dy * 100); |
| break; |
| case TM_FLY_Z: |
| mCamera.localTranslate(Vector3f(0, 0, -dy * 200)); |
| break; |
| case TM_FLY_PAN: |
| mCamera.localTranslate(Vector3f(dx * 200, dy * 200, 0)); |
| break; |
| default: |
| break; |
| } |
| |
| updateGL(); |
| } |
| |
| mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); |
| } |
| |
| void RenderingWidget::paintGL() { |
| glEnable(GL_DEPTH_TEST); |
| glDisable(GL_CULL_FACE); |
| glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); |
| glDisable(GL_COLOR_MATERIAL); |
| glDisable(GL_BLEND); |
| glDisable(GL_ALPHA_TEST); |
| glDisable(GL_TEXTURE_1D); |
| glDisable(GL_TEXTURE_2D); |
| glDisable(GL_TEXTURE_3D); |
| |
| // Clear buffers |
| glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); |
| |
| mCamera.activateGL(); |
| |
| drawScene(); |
| } |
| |
| void RenderingWidget::initializeGL() { |
| glClearColor(1., 1., 1., 0.); |
| glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); |
| glDepthMask(GL_TRUE); |
| glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); |
| |
| mCamera.setPosition(Vector3f(-200, -200, -200)); |
| mCamera.setTarget(Vector3f(0, 0, 0)); |
| mInitFrame.orientation = mCamera.orientation().inverse(); |
| mInitFrame.position = mCamera.viewMatrix().translation(); |
| } |
| |
| void RenderingWidget::resizeGL(int width, int height) { mCamera.setViewport(width, height); } |
| |
| void RenderingWidget::setNavMode(int m) { mNavMode = NavMode(m); } |
| |
| void RenderingWidget::setLerpMode(int m) { mLerpMode = LerpMode(m); } |
| |
| void RenderingWidget::setRotationMode(int m) { mRotationMode = RotationMode(m); } |
| |
| void RenderingWidget::resetCamera() { |
| if (mAnimate) stopAnimation(); |
| m_timeline.clear(); |
| Frame aux0 = mCamera.frame(); |
| aux0.orientation = aux0.orientation.inverse(); |
| aux0.position = mCamera.viewMatrix().translation(); |
| m_timeline[0] = aux0; |
| |
| Vector3f currentTarget = mCamera.target(); |
| mCamera.setTarget(Vector3f::Zero()); |
| |
| // compute the rotation duration to move the camera to the target |
| Frame aux1 = mCamera.frame(); |
| aux1.orientation = aux1.orientation.inverse(); |
| aux1.position = mCamera.viewMatrix().translation(); |
| float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9; |
| if (duration < 0.1) duration = 0.1; |
| |
| // put the camera at that time step: |
| aux1 = aux0.lerp(duration / 2, mInitFrame); |
| // and make it look at the target again |
| aux1.orientation = aux1.orientation.inverse(); |
| aux1.position = -(aux1.orientation * aux1.position); |
| mCamera.setFrame(aux1); |
| mCamera.setTarget(Vector3f::Zero()); |
| |
| // add this camera keyframe |
| aux1.orientation = aux1.orientation.inverse(); |
| aux1.position = mCamera.viewMatrix().translation(); |
| m_timeline[duration] = aux1; |
| |
| m_timeline[2] = mInitFrame; |
| m_alpha = 0; |
| animate(); |
| connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); |
| m_timer.start(1000 / 30); |
| mAnimate = true; |
| } |
| |
| QWidget* RenderingWidget::createNavigationControlWidget() { |
| QWidget* panel = new QWidget(); |
| QVBoxLayout* layout = new QVBoxLayout(); |
| |
| { |
| QPushButton* but = new QPushButton("reset"); |
| but->setToolTip("move the camera to initial position (with animation)"); |
| layout->addWidget(but); |
| connect(but, SIGNAL(clicked()), this, SLOT(resetCamera())); |
| } |
| { |
| // navigation mode |
| QGroupBox* box = new QGroupBox("navigation mode"); |
| QVBoxLayout* boxLayout = new QVBoxLayout; |
| QButtonGroup* group = new QButtonGroup(panel); |
| QRadioButton* but; |
| but = new QRadioButton("turn around"); |
| but->setToolTip("look around an object"); |
| group->addButton(but, NavTurnAround); |
| boxLayout->addWidget(but); |
| but = new QRadioButton("fly"); |
| but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)"); |
| group->addButton(but, NavFly); |
| boxLayout->addWidget(but); |
| group->button(mNavMode)->setChecked(true); |
| connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int))); |
| box->setLayout(boxLayout); |
| layout->addWidget(box); |
| } |
| { |
| // track ball, rotation mode |
| QGroupBox* box = new QGroupBox("rotation mode"); |
| QVBoxLayout* boxLayout = new QVBoxLayout; |
| QButtonGroup* group = new QButtonGroup(panel); |
| QRadioButton* but; |
| but = new QRadioButton("stable trackball"); |
| group->addButton(but, RotationStable); |
| boxLayout->addWidget(but); |
| but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere"); |
| but = new QRadioButton("standard rotation"); |
| group->addButton(but, RotationStandard); |
| boxLayout->addWidget(but); |
| but->setToolTip( |
| "standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes"); |
| group->button(mRotationMode)->setChecked(true); |
| connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int))); |
| box->setLayout(boxLayout); |
| layout->addWidget(box); |
| } |
| { |
| // interpolation mode |
| QGroupBox* box = new QGroupBox("spherical interpolation"); |
| QVBoxLayout* boxLayout = new QVBoxLayout; |
| QButtonGroup* group = new QButtonGroup(panel); |
| QRadioButton* but; |
| but = new QRadioButton("quaternion slerp"); |
| group->addButton(but, LerpQuaternion); |
| boxLayout->addWidget(but); |
| but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations"); |
| but = new QRadioButton("euler angles"); |
| group->addButton(but, LerpEulerAngles); |
| boxLayout->addWidget(but); |
| but->setToolTip("use Euler angles to interpolate orientations"); |
| group->button(mNavMode)->setChecked(true); |
| connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int))); |
| box->setLayout(boxLayout); |
| layout->addWidget(box); |
| } |
| layout->addItem(new QSpacerItem(0, 0, QSizePolicy::Minimum, QSizePolicy::Expanding)); |
| panel->setLayout(layout); |
| return panel; |
| } |
| |
| QuaternionDemo::QuaternionDemo() { |
| mRenderingWidget = new RenderingWidget(); |
| setCentralWidget(mRenderingWidget); |
| |
| QDockWidget* panel = new QDockWidget("navigation", this); |
| panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea)); |
| addDockWidget(Qt::RightDockWidgetArea, panel); |
| panel->setWidget(mRenderingWidget->createNavigationControlWidget()); |
| } |
| |
| int main(int argc, char* argv[]) { |
| std::cout << "Navigation:\n"; |
| std::cout << " left button: rotate around the target\n"; |
| std::cout << " middle button: zoom\n"; |
| std::cout << " left button + ctrl quake rotate (rotate around camera position)\n"; |
| std::cout << " middle button + ctrl walk (progress along camera's z direction)\n"; |
| std::cout << " left button: pan (translate in the XY camera's plane)\n\n"; |
| std::cout << "R : move the camera to initial position\n"; |
| std::cout << "A : start/stop animation\n"; |
| std::cout << "C : clear the animation\n"; |
| std::cout << "G : add a key frame\n"; |
| |
| QApplication app(argc, argv); |
| QuaternionDemo demo; |
| demo.resize(600, 500); |
| demo.show(); |
| return app.exec(); |
| } |
| |
| #include "quaternion_demo.moc" |