blob: 5f8673c740e17aacfecc6e550bf746ecb3b5e829 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "quaternion_demo.h"
#include "icosphere.h"
#include <Eigen/Geometry>
#include <Eigen/QR>
#include <Eigen/LU>
#include <iostream>
#include <QEvent>
#include <QMouseEvent>
#include <QInputDialog>
#include <QGridLayout>
#include <QButtonGroup>
#include <QRadioButton>
#include <QDockWidget>
#include <QPushButton>
#include <QGroupBox>
using namespace Eigen;
class FancySpheres {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
FancySpheres() {
const int levels = 4;
const float scale = 0.33;
float radius = 100;
std::vector<int> parents;
// leval 0
mCenters.push_back(Vector3f::Zero());
parents.push_back(-1);
mRadii.push_back(radius);
// generate level 1 using icosphere vertices
radius *= 0.45;
{
float dist = mRadii[0] * 0.9;
for (int i = 0; i < 12; ++i) {
mCenters.push_back(mIcoSphere.vertices()[i] * dist);
mRadii.push_back(radius);
parents.push_back(0);
}
}
static const float angles[10] = {0, 0, M_PI, 0. * M_PI, M_PI, 0.5 * M_PI, M_PI, 1. * M_PI, M_PI, 1.5 * M_PI};
// generate other levels
int start = 1;
for (int l = 1; l < levels; l++) {
radius *= scale;
int end = mCenters.size();
for (int i = start; i < end; ++i) {
Vector3f c = mCenters[i];
Vector3f ax0 = (c - mCenters[parents[i]]).normalized();
Vector3f ax1 = ax0.unitOrthogonal();
Quaternionf q;
q.setFromTwoVectors(Vector3f::UnitZ(), ax0);
Affine3f t = Translation3f(c) * q * Scaling(mRadii[i] + radius);
for (int j = 0; j < 5; ++j) {
Vector3f newC =
c + ((AngleAxisf(angles[j * 2 + 1], ax0) * AngleAxisf(angles[j * 2 + 0] * (l == 1 ? 0.35 : 0.5), ax1)) *
ax0) *
(mRadii[i] + radius * 0.8);
mCenters.push_back(newC);
mRadii.push_back(radius);
parents.push_back(i);
}
}
start = end;
}
}
void draw() {
int end = mCenters.size();
glEnable(GL_NORMALIZE);
for (int i = 0; i < end; ++i) {
Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]);
gpu.pushMatrix(GL_MODELVIEW);
gpu.multMatrix(t.matrix(), GL_MODELVIEW);
mIcoSphere.draw(2);
gpu.popMatrix(GL_MODELVIEW);
}
glDisable(GL_NORMALIZE);
}
protected:
std::vector<Vector3f> mCenters;
std::vector<float> mRadii;
IcoSphere mIcoSphere;
};
// generic linear interpolation method
template <typename T>
T lerp(float t, const T& a, const T& b) {
return a * (1 - t) + b * t;
}
// quaternion slerp
template <>
Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b) {
return a.slerp(t, b);
}
// linear interpolation of a frame using the type OrientationType
// to perform the interpolation of the orientations
template <typename OrientationType>
inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b) {
return Frame(lerp(alpha, a.position, b.position),
Quaternionf(lerp(alpha, OrientationType(a.orientation), OrientationType(b.orientation))));
}
template <typename Scalar_>
class EulerAngles {
public:
enum { Dim = 3 };
typedef Scalar_ Scalar;
typedef Matrix<Scalar, 3, 3> Matrix3;
typedef Matrix<Scalar, 3, 1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
protected:
Vector3 m_angles;
public:
EulerAngles() {}
inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
inline EulerAngles(const QuaternionType& q) { *this = q; }
const Vector3& coeffs() const { return m_angles; }
Vector3& coeffs() { return m_angles; }
EulerAngles& operator=(const QuaternionType& q) {
Matrix3 m = q.toRotationMatrix();
return *this = m;
}
EulerAngles& operator=(const Matrix3& m) {
// mat = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
m_angles.coeffRef(1) = std::asin(m.coeff(0, 2));
m_angles.coeffRef(0) = std::atan2(-m.coeff(1, 2), m.coeff(2, 2));
m_angles.coeffRef(2) = std::atan2(-m.coeff(0, 1), m.coeff(0, 0));
return *this;
}
Matrix3 toRotationMatrix(void) const {
Vector3 c = m_angles.array().cos();
Vector3 s = m_angles.array().sin();
Matrix3 res;
res << c.y() * c.z(), -c.y() * s.z(), s.y(), c.z() * s.x() * s.y() + c.x() * s.z(),
c.x() * c.z() - s.x() * s.y() * s.z(), -c.y() * s.x(), -c.x() * c.z() * s.y() + s.x() * s.z(),
c.z() * s.x() + c.x() * s.y() * s.z(), c.x() * c.y();
return res;
}
operator QuaternionType() { return QuaternionType(toRotationMatrix()); }
};
// Euler angles slerp
template <>
EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b) {
EulerAngles<float> res;
res.coeffs() = lerp(t, a.coeffs(), b.coeffs());
return res;
}
RenderingWidget::RenderingWidget() {
mAnimate = false;
mCurrentTrackingMode = TM_NO_TRACK;
mNavMode = NavTurnAround;
mLerpMode = LerpQuaternion;
mRotationMode = RotationStable;
mTrackball.setCamera(&mCamera);
// required to capture key press events
setFocusPolicy(Qt::ClickFocus);
}
void RenderingWidget::grabFrame(void) {
// ask user for a time
bool ok = false;
double t = 0;
if (!m_timeline.empty()) t = (--m_timeline.end())->first + 1.;
t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ", t, 0, 1e3, 1, &ok);
if (ok) {
Frame aux;
aux.orientation = mCamera.viewMatrix().linear();
aux.position = mCamera.viewMatrix().translation();
m_timeline[t] = aux;
}
}
void RenderingWidget::drawScene() {
static FancySpheres sFancySpheres;
float length = 50;
gpu.drawVector(Vector3f::Zero(), length * Vector3f::UnitX(), Color(1, 0, 0, 1));
gpu.drawVector(Vector3f::Zero(), length * Vector3f::UnitY(), Color(0, 1, 0, 1));
gpu.drawVector(Vector3f::Zero(), length * Vector3f::UnitZ(), Color(0, 0, 1, 1));
// draw the fractal object
float sqrt3 = std::sqrt(3.);
glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5, 0.5, 0.5, 1).data());
glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5, 1, 0.5, 1).data());
glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1, 1, 1, 1).data());
glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3, -sqrt3, sqrt3, 0).data());
glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0, 0, 0, 1).data());
glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1, 0.5, 0.5, 1).data());
glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1, 1, 1, 1).data());
glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3, sqrt3, -sqrt3, 0).data());
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data());
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data());
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data());
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
sFancySpheres.draw();
glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
glNormalPointer(GL_FLOAT, 0, mNormals[0].data());
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glDrawArrays(GL_TRIANGLES, 0, mVertices.size());
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisable(GL_LIGHTING);
}
void RenderingWidget::animate() {
m_alpha += double(m_timer.interval()) * 1e-3;
TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha);
TimeLine::const_iterator lo = hi;
--lo;
Frame currentFrame;
if (hi == m_timeline.end()) {
// end
currentFrame = lo->second;
stopAnimation();
} else if (hi == m_timeline.begin()) {
// start
currentFrame = hi->second;
} else {
float s = (m_alpha - lo->first) / (hi->first - lo->first);
if (mLerpMode == LerpEulerAngles)
currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second);
else if (mLerpMode == LerpQuaternion)
currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second);
else {
std::cerr << "Invalid rotation interpolation mode (abort)\n";
exit(2);
}
currentFrame.orientation.coeffs().normalize();
}
currentFrame.orientation = currentFrame.orientation.inverse();
currentFrame.position = -(currentFrame.orientation * currentFrame.position);
mCamera.setFrame(currentFrame);
updateGL();
}
void RenderingWidget::keyPressEvent(QKeyEvent* e) {
switch (e->key()) {
case Qt::Key_Up:
mCamera.zoom(2);
break;
case Qt::Key_Down:
mCamera.zoom(-2);
break;
// add a frame
case Qt::Key_G:
grabFrame();
break;
// clear the time line
case Qt::Key_C:
m_timeline.clear();
break;
// move the camera to initial pos
case Qt::Key_R:
resetCamera();
break;
// start/stop the animation
case Qt::Key_A:
if (mAnimate) {
stopAnimation();
} else {
m_alpha = 0;
connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.start(1000 / 30);
mAnimate = true;
}
break;
default:
break;
}
updateGL();
}
void RenderingWidget::stopAnimation() {
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.stop();
mAnimate = false;
m_alpha = 0;
}
void RenderingWidget::mousePressEvent(QMouseEvent* e) {
mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
bool fly = (mNavMode == NavFly) || (e->modifiers() & Qt::ControlModifier);
switch (e->button()) {
case Qt::LeftButton:
if (fly) {
mCurrentTrackingMode = TM_LOCAL_ROTATE;
mTrackball.start(Trackball::Local);
} else {
mCurrentTrackingMode = TM_ROTATE_AROUND;
mTrackball.start(Trackball::Around);
}
mTrackball.track(mMouseCoords);
break;
case Qt::MidButton:
if (fly)
mCurrentTrackingMode = TM_FLY_Z;
else
mCurrentTrackingMode = TM_ZOOM;
break;
case Qt::RightButton:
mCurrentTrackingMode = TM_FLY_PAN;
break;
default:
break;
}
}
void RenderingWidget::mouseReleaseEvent(QMouseEvent*) {
mCurrentTrackingMode = TM_NO_TRACK;
updateGL();
}
void RenderingWidget::mouseMoveEvent(QMouseEvent* e) {
// tracking
if (mCurrentTrackingMode != TM_NO_TRACK) {
float dx = float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth());
float dy = -float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight());
// speedup the transformations
if (e->modifiers() & Qt::ShiftModifier) {
dx *= 10.;
dy *= 10.;
}
switch (mCurrentTrackingMode) {
case TM_ROTATE_AROUND:
case TM_LOCAL_ROTATE:
if (mRotationMode == RotationStable) {
// use the stable trackball implementation mapping
// the 2D coordinates to 3D points on a sphere.
mTrackball.track(Vector2i(e->pos().x(), e->pos().y()));
} else {
// standard approach mapping the x and y displacements as rotations
// around the camera's X and Y axes.
Quaternionf q = AngleAxisf(dx * M_PI, Vector3f::UnitY()) * AngleAxisf(-dy * M_PI, Vector3f::UnitX());
if (mCurrentTrackingMode == TM_LOCAL_ROTATE)
mCamera.localRotate(q);
else
mCamera.rotateAroundTarget(q);
}
break;
case TM_ZOOM:
mCamera.zoom(dy * 100);
break;
case TM_FLY_Z:
mCamera.localTranslate(Vector3f(0, 0, -dy * 200));
break;
case TM_FLY_PAN:
mCamera.localTranslate(Vector3f(dx * 200, dy * 200, 0));
break;
default:
break;
}
updateGL();
}
mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
}
void RenderingWidget::paintGL() {
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glDisable(GL_COLOR_MATERIAL);
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glDisable(GL_TEXTURE_1D);
glDisable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_3D);
// Clear buffers
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
mCamera.activateGL();
drawScene();
}
void RenderingWidget::initializeGL() {
glClearColor(1., 1., 1., 0.);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
mCamera.setPosition(Vector3f(-200, -200, -200));
mCamera.setTarget(Vector3f(0, 0, 0));
mInitFrame.orientation = mCamera.orientation().inverse();
mInitFrame.position = mCamera.viewMatrix().translation();
}
void RenderingWidget::resizeGL(int width, int height) { mCamera.setViewport(width, height); }
void RenderingWidget::setNavMode(int m) { mNavMode = NavMode(m); }
void RenderingWidget::setLerpMode(int m) { mLerpMode = LerpMode(m); }
void RenderingWidget::setRotationMode(int m) { mRotationMode = RotationMode(m); }
void RenderingWidget::resetCamera() {
if (mAnimate) stopAnimation();
m_timeline.clear();
Frame aux0 = mCamera.frame();
aux0.orientation = aux0.orientation.inverse();
aux0.position = mCamera.viewMatrix().translation();
m_timeline[0] = aux0;
Vector3f currentTarget = mCamera.target();
mCamera.setTarget(Vector3f::Zero());
// compute the rotation duration to move the camera to the target
Frame aux1 = mCamera.frame();
aux1.orientation = aux1.orientation.inverse();
aux1.position = mCamera.viewMatrix().translation();
float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9;
if (duration < 0.1) duration = 0.1;
// put the camera at that time step:
aux1 = aux0.lerp(duration / 2, mInitFrame);
// and make it look at the target again
aux1.orientation = aux1.orientation.inverse();
aux1.position = -(aux1.orientation * aux1.position);
mCamera.setFrame(aux1);
mCamera.setTarget(Vector3f::Zero());
// add this camera keyframe
aux1.orientation = aux1.orientation.inverse();
aux1.position = mCamera.viewMatrix().translation();
m_timeline[duration] = aux1;
m_timeline[2] = mInitFrame;
m_alpha = 0;
animate();
connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.start(1000 / 30);
mAnimate = true;
}
QWidget* RenderingWidget::createNavigationControlWidget() {
QWidget* panel = new QWidget();
QVBoxLayout* layout = new QVBoxLayout();
{
QPushButton* but = new QPushButton("reset");
but->setToolTip("move the camera to initial position (with animation)");
layout->addWidget(but);
connect(but, SIGNAL(clicked()), this, SLOT(resetCamera()));
}
{
// navigation mode
QGroupBox* box = new QGroupBox("navigation mode");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("turn around");
but->setToolTip("look around an object");
group->addButton(but, NavTurnAround);
boxLayout->addWidget(but);
but = new QRadioButton("fly");
but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)");
group->addButton(but, NavFly);
boxLayout->addWidget(but);
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
{
// track ball, rotation mode
QGroupBox* box = new QGroupBox("rotation mode");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("stable trackball");
group->addButton(but, RotationStable);
boxLayout->addWidget(but);
but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere");
but = new QRadioButton("standard rotation");
group->addButton(but, RotationStandard);
boxLayout->addWidget(but);
but->setToolTip(
"standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes");
group->button(mRotationMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
{
// interpolation mode
QGroupBox* box = new QGroupBox("spherical interpolation");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("quaternion slerp");
group->addButton(but, LerpQuaternion);
boxLayout->addWidget(but);
but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations");
but = new QRadioButton("euler angles");
group->addButton(but, LerpEulerAngles);
boxLayout->addWidget(but);
but->setToolTip("use Euler angles to interpolate orientations");
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
layout->addItem(new QSpacerItem(0, 0, QSizePolicy::Minimum, QSizePolicy::Expanding));
panel->setLayout(layout);
return panel;
}
QuaternionDemo::QuaternionDemo() {
mRenderingWidget = new RenderingWidget();
setCentralWidget(mRenderingWidget);
QDockWidget* panel = new QDockWidget("navigation", this);
panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea));
addDockWidget(Qt::RightDockWidgetArea, panel);
panel->setWidget(mRenderingWidget->createNavigationControlWidget());
}
int main(int argc, char* argv[]) {
std::cout << "Navigation:\n";
std::cout << " left button: rotate around the target\n";
std::cout << " middle button: zoom\n";
std::cout << " left button + ctrl quake rotate (rotate around camera position)\n";
std::cout << " middle button + ctrl walk (progress along camera's z direction)\n";
std::cout << " left button: pan (translate in the XY camera's plane)\n\n";
std::cout << "R : move the camera to initial position\n";
std::cout << "A : start/stop animation\n";
std::cout << "C : clear the animation\n";
std::cout << "G : add a key frame\n";
QApplication app(argc, argv);
QuaternionDemo demo;
demo.resize(600, 500);
demo.show();
return app.exec();
}
#include "quaternion_demo.moc"