| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| |
| #include "main.h" |
| #include <Eigen/Cholesky> |
| #include <Eigen/QR> |
| #include "solverbase.h" |
| |
| template <typename MatrixType, int UpLo> |
| typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { |
| if (m.cols() == 0) return typename MatrixType::RealScalar(0); |
| MatrixType symm = m.template selfadjointView<UpLo>(); |
| return symm.cwiseAbs().colwise().sum().maxCoeff(); |
| } |
| |
| template <typename MatrixType, template <typename, int> class CholType> |
| void test_chol_update(const MatrixType& symm) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| MatrixType symmLo = symm.template triangularView<Lower>(); |
| MatrixType symmUp = symm.template triangularView<Upper>(); |
| MatrixType symmCpy = symm; |
| |
| CholType<MatrixType, Lower> chollo(symmLo); |
| CholType<MatrixType, Upper> cholup(symmUp); |
| |
| for (int k = 0; k < 10; ++k) { |
| VectorType vec = VectorType::Random(symm.rows()); |
| RealScalar sigma = internal::random<RealScalar>(); |
| symmCpy += sigma * vec * vec.adjoint(); |
| |
| // we are doing some downdates, so it might be the case that the matrix is not SPD anymore |
| CholType<MatrixType, Lower> chol(symmCpy); |
| if (chol.info() != Success) break; |
| |
| chollo.rankUpdate(vec, sigma); |
| VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix()); |
| |
| cholup.rankUpdate(vec, sigma); |
| VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix()); |
| } |
| } |
| |
| template <typename MatrixType> |
| void cholesky(const MatrixType& m) { |
| /* this test covers the following files: |
| LLT.h LDLT.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| MatrixType a0 = MatrixType::Random(rows, cols); |
| VectorType vecB = VectorType::Random(rows), vecX(rows); |
| MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols); |
| SquareMatrixType symm = a0 * a0.adjoint(); |
| // let's make sure the matrix is not singular or near singular |
| for (int k = 0; k < 3; ++k) { |
| MatrixType a1 = MatrixType::Random(rows, cols); |
| symm += a1 * a1.adjoint(); |
| } |
| |
| { |
| STATIC_CHECK((internal::is_same<typename LLT<MatrixType, Lower>::StorageIndex, int>::value)); |
| STATIC_CHECK((internal::is_same<typename LLT<MatrixType, Upper>::StorageIndex, int>::value)); |
| |
| SquareMatrixType symmUp = symm.template triangularView<Upper>(); |
| SquareMatrixType symmLo = symm.template triangularView<Lower>(); |
| |
| LLT<SquareMatrixType, Lower> chollo(symmLo); |
| VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); |
| |
| check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1); |
| check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows); |
| |
| const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows, cols)); |
| RealScalar rcond = |
| (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / matrix_l1_norm<MatrixType, Lower>(symmLo_inverse); |
| RealScalar rcond_est = chollo.rcond(); |
| // Verify that the estimated condition number is within a factor of 10 of the |
| // truth. |
| VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); |
| |
| // test the upper mode |
| LLT<SquareMatrixType, Upper> cholup(symmUp); |
| VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); |
| vecX = cholup.solve(vecB); |
| VERIFY_IS_APPROX(symm * vecX, vecB); |
| matX = cholup.solve(matB); |
| VERIFY_IS_APPROX(symm * matX, matB); |
| |
| // Verify that the estimated condition number is within a factor of 10 of the |
| // truth. |
| const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows, cols)); |
| rcond = |
| (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / matrix_l1_norm<MatrixType, Upper>(symmUp_inverse); |
| rcond_est = cholup.rcond(); |
| VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); |
| |
| MatrixType neg = -symmLo; |
| chollo.compute(neg); |
| VERIFY(neg.size() == 0 || chollo.info() == NumericalIssue); |
| |
| VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU())); |
| VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL())); |
| VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU())); |
| VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL())); |
| |
| // test some special use cases of SelfCwiseBinaryOp: |
| MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols); |
| m2 = m1; |
| m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB); |
| VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); |
| m2 = m1; |
| m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB); |
| VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); |
| m2 = m1; |
| m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB); |
| VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); |
| m2 = m1; |
| m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB); |
| VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); |
| } |
| |
| // LDLT |
| { |
| STATIC_CHECK((internal::is_same<typename LDLT<MatrixType, Lower>::StorageIndex, int>::value)); |
| STATIC_CHECK((internal::is_same<typename LDLT<MatrixType, Upper>::StorageIndex, int>::value)); |
| |
| int sign = internal::random<int>() % 2 ? 1 : -1; |
| |
| if (sign == -1) { |
| symm = -symm; // test a negative matrix |
| } |
| |
| SquareMatrixType symmUp = symm.template triangularView<Upper>(); |
| SquareMatrixType symmLo = symm.template triangularView<Lower>(); |
| |
| LDLT<SquareMatrixType, Lower> ldltlo(symmLo); |
| VERIFY(ldltlo.info() == Success); |
| VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); |
| |
| check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1); |
| check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows); |
| |
| const MatrixType symmLo_inverse = ldltlo.solve(MatrixType::Identity(rows, cols)); |
| RealScalar rcond = |
| (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / matrix_l1_norm<MatrixType, Lower>(symmLo_inverse); |
| RealScalar rcond_est = ldltlo.rcond(); |
| // Verify that the estimated condition number is within a factor of 10 of the |
| // truth. |
| VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); |
| |
| LDLT<SquareMatrixType, Upper> ldltup(symmUp); |
| VERIFY(ldltup.info() == Success); |
| VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); |
| vecX = ldltup.solve(vecB); |
| VERIFY_IS_APPROX(symm * vecX, vecB); |
| matX = ldltup.solve(matB); |
| VERIFY_IS_APPROX(symm * matX, matB); |
| |
| // Verify that the estimated condition number is within a factor of 10 of the |
| // truth. |
| const MatrixType symmUp_inverse = ldltup.solve(MatrixType::Identity(rows, cols)); |
| rcond = |
| (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / matrix_l1_norm<MatrixType, Upper>(symmUp_inverse); |
| rcond_est = ldltup.rcond(); |
| VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); |
| |
| VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU())); |
| VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL())); |
| VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU())); |
| VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL())); |
| |
| if (MatrixType::RowsAtCompileTime == Dynamic) { |
| // note : each inplace permutation requires a small temporary vector (mask) |
| |
| // check inplace solve |
| matX = matB; |
| VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0); |
| VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval()); |
| |
| matX = matB; |
| VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0); |
| VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval()); |
| } |
| |
| // restore |
| if (sign == -1) symm = -symm; |
| |
| // check matrices coming from linear constraints with Lagrange multipliers |
| if (rows >= 3) { |
| SquareMatrixType A = symm; |
| Index c = internal::random<Index>(0, rows - 2); |
| A.bottomRightCorner(c, c).setZero(); |
| // Make sure a solution exists: |
| vecX.setRandom(); |
| vecB = A * vecX; |
| vecX.setZero(); |
| ldltlo.compute(A); |
| VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); |
| vecX = ldltlo.solve(vecB); |
| VERIFY_IS_APPROX(A * vecX, vecB); |
| } |
| |
| // check non-full rank matrices |
| if (rows >= 3) { |
| Index r = internal::random<Index>(1, rows - 1); |
| Matrix<Scalar, Dynamic, Dynamic> a = Matrix<Scalar, Dynamic, Dynamic>::Random(rows, r); |
| SquareMatrixType A = a * a.adjoint(); |
| // Make sure a solution exists: |
| vecX.setRandom(); |
| vecB = A * vecX; |
| vecX.setZero(); |
| ldltlo.compute(A); |
| VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); |
| vecX = ldltlo.solve(vecB); |
| VERIFY_IS_APPROX(A * vecX, vecB); |
| } |
| |
| // check matrices with a wide spectrum |
| if (rows >= 3) { |
| using std::pow; |
| using std::sqrt; |
| RealScalar s = (std::min)(16, std::numeric_limits<RealScalar>::max_exponent10 / 8); |
| Matrix<Scalar, Dynamic, Dynamic> a = Matrix<Scalar, Dynamic, Dynamic>::Random(rows, rows); |
| Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(rows); |
| for (Index k = 0; k < rows; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s)); |
| SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); |
| // Make sure a solution exists: |
| vecX.setRandom(); |
| vecB = A * vecX; |
| vecX.setZero(); |
| ldltlo.compute(A); |
| VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); |
| vecX = ldltlo.solve(vecB); |
| |
| if (ldltlo.vectorD().real().cwiseAbs().minCoeff() > RealScalar(0)) { |
| VERIFY_IS_APPROX(A * vecX, vecB); |
| } else { |
| RealScalar large_tol = sqrt(test_precision<RealScalar>()); |
| VERIFY((A * vecX).isApprox(vecB, large_tol)); |
| |
| ++g_test_level; |
| VERIFY_IS_APPROX(A * vecX, vecB); |
| --g_test_level; |
| } |
| } |
| } |
| |
| // update/downdate |
| CALL_SUBTEST((test_chol_update<SquareMatrixType, LLT>(symm))); |
| CALL_SUBTEST((test_chol_update<SquareMatrixType, LDLT>(symm))); |
| } |
| |
| template <typename MatrixType> |
| void cholesky_cplx(const MatrixType& m) { |
| // classic test |
| cholesky(m); |
| |
| // test mixing real/scalar types |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| RealMatrixType a0 = RealMatrixType::Random(rows, cols); |
| VectorType vecB = VectorType::Random(rows), vecX(rows); |
| MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols); |
| RealMatrixType symm = a0 * a0.adjoint(); |
| // let's make sure the matrix is not singular or near singular |
| for (int k = 0; k < 3; ++k) { |
| RealMatrixType a1 = RealMatrixType::Random(rows, cols); |
| symm += a1 * a1.adjoint(); |
| } |
| |
| { |
| RealMatrixType symmLo = symm.template triangularView<Lower>(); |
| |
| LLT<RealMatrixType, Lower> chollo(symmLo); |
| VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); |
| |
| check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1); |
| // check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows); |
| } |
| |
| // LDLT |
| { |
| int sign = internal::random<int>() % 2 ? 1 : -1; |
| |
| if (sign == -1) { |
| symm = -symm; // test a negative matrix |
| } |
| |
| RealMatrixType symmLo = symm.template triangularView<Lower>(); |
| |
| LDLT<RealMatrixType, Lower> ldltlo(symmLo); |
| VERIFY(ldltlo.info() == Success); |
| VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); |
| |
| check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1); |
| // check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows); |
| } |
| } |
| |
| // regression test for bug 241 |
| template <typename MatrixType> |
| void cholesky_bug241(const MatrixType& m) { |
| eigen_assert(m.rows() == 2 && m.cols() == 2); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| MatrixType matA; |
| matA << 1, 1, 1, 1; |
| VectorType vecB; |
| vecB << 1, 1; |
| VectorType vecX = matA.ldlt().solve(vecB); |
| VERIFY_IS_APPROX(matA * vecX, vecB); |
| } |
| |
| // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal. |
| // This test checks that LDLT reports correctly that matrix is indefinite. |
| // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736 |
| template <typename MatrixType> |
| void cholesky_definiteness(const MatrixType& m) { |
| eigen_assert(m.rows() == 2 && m.cols() == 2); |
| MatrixType mat; |
| LDLT<MatrixType> ldlt(2); |
| |
| { |
| mat << 1, 0, 0, -1; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == Success); |
| VERIFY(!ldlt.isNegative()); |
| VERIFY(!ldlt.isPositive()); |
| VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| { |
| mat << 1, 2, 2, 1; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == Success); |
| VERIFY(!ldlt.isNegative()); |
| VERIFY(!ldlt.isPositive()); |
| VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| { |
| mat << 0, 0, 0, 0; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == Success); |
| VERIFY(ldlt.isNegative()); |
| VERIFY(ldlt.isPositive()); |
| VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| { |
| mat << 0, 0, 0, 1; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == Success); |
| VERIFY(!ldlt.isNegative()); |
| VERIFY(ldlt.isPositive()); |
| VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| { |
| mat << -1, 0, 0, 0; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == Success); |
| VERIFY(ldlt.isNegative()); |
| VERIFY(!ldlt.isPositive()); |
| VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| } |
| |
| template <typename> |
| void cholesky_faillure_cases() { |
| MatrixXd mat; |
| LDLT<MatrixXd> ldlt; |
| |
| { |
| mat.resize(2, 2); |
| mat << 0, 1, 1, 0; |
| ldlt.compute(mat); |
| VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); |
| VERIFY(ldlt.info() == NumericalIssue); |
| } |
| #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE_SSE2) |
| { |
| mat.resize(3, 3); |
| mat << -1, -3, 3, -3, -8.9999999999999999999, 1, 3, 1, 0; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == NumericalIssue); |
| VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| #endif |
| { |
| mat.resize(3, 3); |
| mat << 1, 2, 3, 2, 4, 1, 3, 1, 0; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == NumericalIssue); |
| VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| |
| { |
| mat.resize(8, 8); |
| mat << 0.1, 0, -0.1, 0, 0, 0, 1, 0, 0, 4.24667, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.2, 0, -0.1, 0, 0, 0, 0, 2.00333, |
| 0, 8.49333, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.1, 0, 0, 1, 0, 0, 0, 2.00333, 0, 4.24667, 0, 0, 1, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == NumericalIssue); |
| VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| |
| // bug 1479 |
| { |
| mat.resize(4, 4); |
| mat << 1, 2, 0, 1, 2, 4, 0, 2, 0, 0, 0, 1, 1, 2, 1, 1; |
| ldlt.compute(mat); |
| VERIFY(ldlt.info() == NumericalIssue); |
| VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); |
| } |
| } |
| |
| template <typename MatrixType> |
| void cholesky_verify_assert() { |
| MatrixType tmp; |
| |
| LLT<MatrixType> llt; |
| VERIFY_RAISES_ASSERT(llt.matrixL()) |
| VERIFY_RAISES_ASSERT(llt.matrixU()) |
| VERIFY_RAISES_ASSERT(llt.solve(tmp)) |
| VERIFY_RAISES_ASSERT(llt.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(llt.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(llt.solveInPlace(tmp)) |
| |
| LDLT<MatrixType> ldlt; |
| VERIFY_RAISES_ASSERT(ldlt.matrixL()) |
| VERIFY_RAISES_ASSERT(ldlt.transpositionsP()) |
| VERIFY_RAISES_ASSERT(ldlt.vectorD()) |
| VERIFY_RAISES_ASSERT(ldlt.isPositive()) |
| VERIFY_RAISES_ASSERT(ldlt.isNegative()) |
| VERIFY_RAISES_ASSERT(ldlt.solve(tmp)) |
| VERIFY_RAISES_ASSERT(ldlt.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(ldlt.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(ldlt.solveInPlace(tmp)) |
| } |
| |
| EIGEN_DECLARE_TEST(cholesky) { |
| int s = 0; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(cholesky(Matrix<double, 1, 1>())); |
| CALL_SUBTEST_3(cholesky(Matrix2d())); |
| CALL_SUBTEST_3(cholesky_bug241(Matrix2d())); |
| CALL_SUBTEST_3(cholesky_definiteness(Matrix2d())); |
| CALL_SUBTEST_4(cholesky(Matrix3f())); |
| CALL_SUBTEST_5(cholesky(Matrix4d())); |
| |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); |
| CALL_SUBTEST_2(cholesky(MatrixXd(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2); |
| CALL_SUBTEST_6(cholesky_cplx(MatrixXcd(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |
| // empty matrix, regression test for Bug 785: |
| CALL_SUBTEST_2(cholesky(MatrixXd(0, 0))); |
| |
| // This does not work yet: |
| // CALL_SUBTEST_2( cholesky(Matrix<double,0,0>()) ); |
| |
| CALL_SUBTEST_4(cholesky_verify_assert<Matrix3f>()); |
| CALL_SUBTEST_7(cholesky_verify_assert<Matrix3d>()); |
| CALL_SUBTEST_8(cholesky_verify_assert<MatrixXf>()); |
| CALL_SUBTEST_2(cholesky_verify_assert<MatrixXd>()); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_9(LLT<MatrixXf>(10)); |
| CALL_SUBTEST_9(LDLT<MatrixXf>(10)); |
| |
| CALL_SUBTEST_2(cholesky_faillure_cases<void>()); |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries) |
| } |