blob: 1c1e18ec981c1b6736e4a93942835b2f436a2628 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define TEST_ENABLE_TEMPORARY_TRACKING
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/QR>
#include "solverbase.h"
template <typename MatrixType, int UpLo>
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
if (m.cols() == 0) return typename MatrixType::RealScalar(0);
MatrixType symm = m.template selfadjointView<UpLo>();
return symm.cwiseAbs().colwise().sum().maxCoeff();
}
template <typename MatrixType, template <typename, int> class CholType>
void test_chol_update(const MatrixType& symm) {
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType symmLo = symm.template triangularView<Lower>();
MatrixType symmUp = symm.template triangularView<Upper>();
MatrixType symmCpy = symm;
CholType<MatrixType, Lower> chollo(symmLo);
CholType<MatrixType, Upper> cholup(symmUp);
for (int k = 0; k < 10; ++k) {
VectorType vec = VectorType::Random(symm.rows());
RealScalar sigma = internal::random<RealScalar>();
symmCpy += sigma * vec * vec.adjoint();
// we are doing some downdates, so it might be the case that the matrix is not SPD anymore
CholType<MatrixType, Lower> chol(symmCpy);
if (chol.info() != Success) break;
chollo.rankUpdate(vec, sigma);
VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());
cholup.rankUpdate(vec, sigma);
VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
}
}
template <typename MatrixType>
void cholesky(const MatrixType& m) {
/* this test covers the following files:
LLT.h LDLT.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType a0 = MatrixType::Random(rows, cols);
VectorType vecB = VectorType::Random(rows), vecX(rows);
MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols);
SquareMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
for (int k = 0; k < 3; ++k) {
MatrixType a1 = MatrixType::Random(rows, cols);
symm += a1 * a1.adjoint();
}
{
STATIC_CHECK((internal::is_same<typename LLT<MatrixType, Lower>::StorageIndex, int>::value));
STATIC_CHECK((internal::is_same<typename LLT<MatrixType, Upper>::StorageIndex, int>::value));
SquareMatrixType symmUp = symm.template triangularView<Upper>();
SquareMatrixType symmLo = symm.template triangularView<Lower>();
LLT<SquareMatrixType, Lower> chollo(symmLo);
VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1);
check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows);
const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows, cols));
RealScalar rcond =
(RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / matrix_l1_norm<MatrixType, Lower>(symmLo_inverse);
RealScalar rcond_est = chollo.rcond();
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
// test the upper mode
LLT<SquareMatrixType, Upper> cholup(symmUp);
VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
vecX = cholup.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = cholup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows, cols));
rcond =
(RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
rcond_est = cholup.rcond();
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
MatrixType neg = -symmLo;
chollo.compute(neg);
VERIFY(neg.size() == 0 || chollo.info() == NumericalIssue);
VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU()));
VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL()));
// test some special use cases of SelfCwiseBinaryOp:
MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols);
m2 = m1;
m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
m2 = m1;
m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
m2 = m1;
m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
m2 = m1;
m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
}
// LDLT
{
STATIC_CHECK((internal::is_same<typename LDLT<MatrixType, Lower>::StorageIndex, int>::value));
STATIC_CHECK((internal::is_same<typename LDLT<MatrixType, Upper>::StorageIndex, int>::value));
int sign = internal::random<int>() % 2 ? 1 : -1;
if (sign == -1) {
symm = -symm; // test a negative matrix
}
SquareMatrixType symmUp = symm.template triangularView<Upper>();
SquareMatrixType symmLo = symm.template triangularView<Lower>();
LDLT<SquareMatrixType, Lower> ldltlo(symmLo);
VERIFY(ldltlo.info() == Success);
VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1);
check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows);
const MatrixType symmLo_inverse = ldltlo.solve(MatrixType::Identity(rows, cols));
RealScalar rcond =
(RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / matrix_l1_norm<MatrixType, Lower>(symmLo_inverse);
RealScalar rcond_est = ldltlo.rcond();
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
LDLT<SquareMatrixType, Upper> ldltup(symmUp);
VERIFY(ldltup.info() == Success);
VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
vecX = ldltup.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
matX = ldltup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
// Verify that the estimated condition number is within a factor of 10 of the
// truth.
const MatrixType symmUp_inverse = ldltup.solve(MatrixType::Identity(rows, cols));
rcond =
(RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / matrix_l1_norm<MatrixType, Upper>(symmUp_inverse);
rcond_est = ldltup.rcond();
VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10);
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU()));
VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()));
if (MatrixType::RowsAtCompileTime == Dynamic) {
// note : each inplace permutation requires a small temporary vector (mask)
// check inplace solve
matX = matB;
VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0);
VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());
matX = matB;
VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0);
VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval());
}
// restore
if (sign == -1) symm = -symm;
// check matrices coming from linear constraints with Lagrange multipliers
if (rows >= 3) {
SquareMatrixType A = symm;
Index c = internal::random<Index>(0, rows - 2);
A.bottomRightCorner(c, c).setZero();
// Make sure a solution exists:
vecX.setRandom();
vecB = A * vecX;
vecX.setZero();
ldltlo.compute(A);
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
vecX = ldltlo.solve(vecB);
VERIFY_IS_APPROX(A * vecX, vecB);
}
// check non-full rank matrices
if (rows >= 3) {
Index r = internal::random<Index>(1, rows - 1);
Matrix<Scalar, Dynamic, Dynamic> a = Matrix<Scalar, Dynamic, Dynamic>::Random(rows, r);
SquareMatrixType A = a * a.adjoint();
// Make sure a solution exists:
vecX.setRandom();
vecB = A * vecX;
vecX.setZero();
ldltlo.compute(A);
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
vecX = ldltlo.solve(vecB);
VERIFY_IS_APPROX(A * vecX, vecB);
}
// check matrices with a wide spectrum
if (rows >= 3) {
using std::pow;
using std::sqrt;
RealScalar s = (std::min)(16, std::numeric_limits<RealScalar>::max_exponent10 / 8);
Matrix<Scalar, Dynamic, Dynamic> a = Matrix<Scalar, Dynamic, Dynamic>::Random(rows, rows);
Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(rows);
for (Index k = 0; k < rows; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s));
SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
// Make sure a solution exists:
vecX.setRandom();
vecB = A * vecX;
vecX.setZero();
ldltlo.compute(A);
VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
vecX = ldltlo.solve(vecB);
if (ldltlo.vectorD().real().cwiseAbs().minCoeff() > RealScalar(0)) {
VERIFY_IS_APPROX(A * vecX, vecB);
} else {
RealScalar large_tol = sqrt(test_precision<RealScalar>());
VERIFY((A * vecX).isApprox(vecB, large_tol));
++g_test_level;
VERIFY_IS_APPROX(A * vecX, vecB);
--g_test_level;
}
}
}
// update/downdate
CALL_SUBTEST((test_chol_update<SquareMatrixType, LLT>(symm)));
CALL_SUBTEST((test_chol_update<SquareMatrixType, LDLT>(symm)));
}
template <typename MatrixType>
void cholesky_cplx(const MatrixType& m) {
// classic test
cholesky(m);
// test mixing real/scalar types
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealMatrixType a0 = RealMatrixType::Random(rows, cols);
VectorType vecB = VectorType::Random(rows), vecX(rows);
MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols);
RealMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
for (int k = 0; k < 3; ++k) {
RealMatrixType a1 = RealMatrixType::Random(rows, cols);
symm += a1 * a1.adjoint();
}
{
RealMatrixType symmLo = symm.template triangularView<Lower>();
LLT<RealMatrixType, Lower> chollo(symmLo);
VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1);
// check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows);
}
// LDLT
{
int sign = internal::random<int>() % 2 ? 1 : -1;
if (sign == -1) {
symm = -symm; // test a negative matrix
}
RealMatrixType symmLo = symm.template triangularView<Lower>();
LDLT<RealMatrixType, Lower> ldltlo(symmLo);
VERIFY(ldltlo.info() == Success);
VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1);
// check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows);
}
}
// regression test for bug 241
template <typename MatrixType>
void cholesky_bug241(const MatrixType& m) {
eigen_assert(m.rows() == 2 && m.cols() == 2);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType matA;
matA << 1, 1, 1, 1;
VectorType vecB;
vecB << 1, 1;
VectorType vecX = matA.ldlt().solve(vecB);
VERIFY_IS_APPROX(matA * vecX, vecB);
}
// LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal.
// This test checks that LDLT reports correctly that matrix is indefinite.
// See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736
template <typename MatrixType>
void cholesky_definiteness(const MatrixType& m) {
eigen_assert(m.rows() == 2 && m.cols() == 2);
MatrixType mat;
LDLT<MatrixType> ldlt(2);
{
mat << 1, 0, 0, -1;
ldlt.compute(mat);
VERIFY(ldlt.info() == Success);
VERIFY(!ldlt.isNegative());
VERIFY(!ldlt.isPositive());
VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix());
}
{
mat << 1, 2, 2, 1;
ldlt.compute(mat);
VERIFY(ldlt.info() == Success);
VERIFY(!ldlt.isNegative());
VERIFY(!ldlt.isPositive());
VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix());
}
{
mat << 0, 0, 0, 0;
ldlt.compute(mat);
VERIFY(ldlt.info() == Success);
VERIFY(ldlt.isNegative());
VERIFY(ldlt.isPositive());
VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix());
}
{
mat << 0, 0, 0, 1;
ldlt.compute(mat);
VERIFY(ldlt.info() == Success);
VERIFY(!ldlt.isNegative());
VERIFY(ldlt.isPositive());
VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix());
}
{
mat << -1, 0, 0, 0;
ldlt.compute(mat);
VERIFY(ldlt.info() == Success);
VERIFY(ldlt.isNegative());
VERIFY(!ldlt.isPositive());
VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix());
}
}
template <typename>
void cholesky_faillure_cases() {
MatrixXd mat;
LDLT<MatrixXd> ldlt;
{
mat.resize(2, 2);
mat << 0, 1, 1, 0;
ldlt.compute(mat);
VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix());
VERIFY(ldlt.info() == NumericalIssue);
}
#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE_SSE2)
{
mat.resize(3, 3);
mat << -1, -3, 3, -3, -8.9999999999999999999, 1, 3, 1, 0;
ldlt.compute(mat);
VERIFY(ldlt.info() == NumericalIssue);
VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix());
}
#endif
{
mat.resize(3, 3);
mat << 1, 2, 3, 2, 4, 1, 3, 1, 0;
ldlt.compute(mat);
VERIFY(ldlt.info() == NumericalIssue);
VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix());
}
{
mat.resize(8, 8);
mat << 0.1, 0, -0.1, 0, 0, 0, 1, 0, 0, 4.24667, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.2, 0, -0.1, 0, 0, 0, 0, 2.00333,
0, 8.49333, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.1, 0, 0, 1, 0, 0, 0, 2.00333, 0, 4.24667, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0;
ldlt.compute(mat);
VERIFY(ldlt.info() == NumericalIssue);
VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix());
}
// bug 1479
{
mat.resize(4, 4);
mat << 1, 2, 0, 1, 2, 4, 0, 2, 0, 0, 0, 1, 1, 2, 1, 1;
ldlt.compute(mat);
VERIFY(ldlt.info() == NumericalIssue);
VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix());
}
}
template <typename MatrixType>
void cholesky_verify_assert() {
MatrixType tmp;
LLT<MatrixType> llt;
VERIFY_RAISES_ASSERT(llt.matrixL())
VERIFY_RAISES_ASSERT(llt.matrixU())
VERIFY_RAISES_ASSERT(llt.solve(tmp))
VERIFY_RAISES_ASSERT(llt.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(llt.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(llt.solveInPlace(tmp))
LDLT<MatrixType> ldlt;
VERIFY_RAISES_ASSERT(ldlt.matrixL())
VERIFY_RAISES_ASSERT(ldlt.transpositionsP())
VERIFY_RAISES_ASSERT(ldlt.vectorD())
VERIFY_RAISES_ASSERT(ldlt.isPositive())
VERIFY_RAISES_ASSERT(ldlt.isNegative())
VERIFY_RAISES_ASSERT(ldlt.solve(tmp))
VERIFY_RAISES_ASSERT(ldlt.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(ldlt.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(ldlt.solveInPlace(tmp))
}
EIGEN_DECLARE_TEST(cholesky) {
int s = 0;
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(cholesky(Matrix<double, 1, 1>()));
CALL_SUBTEST_3(cholesky(Matrix2d()));
CALL_SUBTEST_3(cholesky_bug241(Matrix2d()));
CALL_SUBTEST_3(cholesky_definiteness(Matrix2d()));
CALL_SUBTEST_4(cholesky(Matrix3f()));
CALL_SUBTEST_5(cholesky(Matrix4d()));
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE);
CALL_SUBTEST_2(cholesky(MatrixXd(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2);
CALL_SUBTEST_6(cholesky_cplx(MatrixXcd(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
}
// empty matrix, regression test for Bug 785:
CALL_SUBTEST_2(cholesky(MatrixXd(0, 0)));
// This does not work yet:
// CALL_SUBTEST_2( cholesky(Matrix<double,0,0>()) );
CALL_SUBTEST_4(cholesky_verify_assert<Matrix3f>());
CALL_SUBTEST_7(cholesky_verify_assert<Matrix3d>());
CALL_SUBTEST_8(cholesky_verify_assert<MatrixXf>());
CALL_SUBTEST_2(cholesky_verify_assert<MatrixXd>());
// Test problem size constructors
CALL_SUBTEST_9(LLT<MatrixXf>(10));
CALL_SUBTEST_9(LDLT<MatrixXf>(10));
CALL_SUBTEST_2(cholesky_faillure_cases<void>());
TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries)
}