| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/LU> |
| |
| template <typename MatrixType> |
| bool find_pivot(typename MatrixType::Scalar tol, MatrixType& diffs, Index col = 0) { |
| bool match = diffs.diagonal().sum() <= tol; |
| if (match || col == diffs.cols()) { |
| return match; |
| } else { |
| Index n = diffs.cols(); |
| std::vector<std::pair<Index, Index> > transpositions; |
| for (Index i = col; i < n; ++i) { |
| Index best_index(0); |
| if (diffs.col(col).segment(col, n - i).minCoeff(&best_index) > tol) break; |
| |
| best_index += col; |
| |
| diffs.row(col).swap(diffs.row(best_index)); |
| if (find_pivot(tol, diffs, col + 1)) return true; |
| diffs.row(col).swap(diffs.row(best_index)); |
| |
| // move current pivot to the end |
| diffs.row(n - (i - col) - 1).swap(diffs.row(best_index)); |
| transpositions.push_back(std::pair<Index, Index>(n - (i - col) - 1, best_index)); |
| } |
| // restore |
| for (Index k = transpositions.size() - 1; k >= 0; --k) |
| diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); |
| } |
| return false; |
| } |
| |
| /* Check that two column vectors are approximately equal up to permutations. |
| * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(), |
| * however this strategy is numerically inaccurate because of numerical cancellation issues. |
| */ |
| template <typename VectorType> |
| void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) { |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| VERIFY(vec1.cols() == 1); |
| VERIFY(vec2.cols() == 1); |
| VERIFY(vec1.rows() == vec2.rows()); |
| |
| Index n = vec1.rows(); |
| RealScalar tol = test_precision<RealScalar>() * test_precision<RealScalar>() * |
| numext::maxi(vec1.squaredNorm(), vec2.squaredNorm()); |
| Matrix<RealScalar, Dynamic, Dynamic> diffs = |
| (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); |
| |
| VERIFY(find_pivot(tol, diffs)); |
| } |
| |
| template <typename MatrixType> |
| void eigensolver(const MatrixType& m) { |
| /* this test covers the following files: |
| ComplexEigenSolver.h, and indirectly ComplexSchur.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| MatrixType a = MatrixType::Random(rows, cols); |
| MatrixType symmA = a.adjoint() * a; |
| |
| ComplexEigenSolver<MatrixType> ei0(symmA); |
| VERIFY_IS_EQUAL(ei0.info(), Success); |
| VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); |
| |
| ComplexEigenSolver<MatrixType> ei1(a); |
| VERIFY_IS_EQUAL(ei1.info(), Success); |
| VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus |
| // another algorithm so results may differ slightly |
| verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); |
| |
| ComplexEigenSolver<MatrixType> ei2; |
| ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
| VERIFY_IS_EQUAL(ei2.info(), Success); |
| VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
| VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
| if (rows > 2) { |
| ei2.setMaxIterations(1).compute(a); |
| VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
| VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
| } |
| |
| ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); |
| VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| |
| // Regression test for issue #66 |
| MatrixType z = MatrixType::Zero(rows, cols); |
| ComplexEigenSolver<MatrixType> eiz(z); |
| VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); |
| |
| MatrixType id = MatrixType::Identity(rows, cols); |
| VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| |
| if (rows > 1 && rows < 20) { |
| // Test matrix with NaN |
| a(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| ComplexEigenSolver<MatrixType> eiNaN(a); |
| VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
| } |
| |
| // regression test for bug 1098 |
| { |
| ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); |
| eig.compute(a.adjoint() * a); |
| } |
| |
| // regression test for bug 478 |
| { |
| a.setZero(); |
| ComplexEigenSolver<MatrixType> ei3(a); |
| VERIFY_IS_EQUAL(ei3.info(), Success); |
| VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(), RealScalar(1)); |
| VERIFY((ei3.eigenvectors().transpose() * ei3.eigenvectors().transpose()).eval().isIdentity()); |
| } |
| } |
| |
| template <typename MatrixType> |
| void eigensolver_verify_assert(const MatrixType& m) { |
| ComplexEigenSolver<MatrixType> eig; |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| |
| MatrixType a = MatrixType::Random(m.rows(), m.cols()); |
| eig.compute(a, false); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| } |
| |
| EIGEN_DECLARE_TEST(eigensolver_complex) { |
| int s = 0; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(eigensolver(Matrix4cf())); |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); |
| CALL_SUBTEST_2(eigensolver(MatrixXcd(s, s))); |
| CALL_SUBTEST_3(eigensolver(Matrix<std::complex<float>, 1, 1>())); |
| CALL_SUBTEST_4(eigensolver(Matrix3f())); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |
| CALL_SUBTEST_1(eigensolver_verify_assert(Matrix4cf())); |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); |
| CALL_SUBTEST_2(eigensolver_verify_assert(MatrixXcd(s, s))); |
| CALL_SUBTEST_3(eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>())); |
| CALL_SUBTEST_4(eigensolver_verify_assert(Matrix3f())); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |