blob: 90364f1c426c8308bdbafd369149dcfb5ccf64f9 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Eigenvalues>
template <typename Scalar, int Size>
void hessenberg(int size = Size) {
typedef Matrix<Scalar, Size, Size> MatrixType;
// Test basic functionality: A = U H U* and H is Hessenberg
for (int counter = 0; counter < g_repeat; ++counter) {
MatrixType m = MatrixType::Random(size, size);
HessenbergDecomposition<MatrixType> hess(m);
MatrixType Q = hess.matrixQ();
MatrixType H = hess.matrixH();
VERIFY_IS_APPROX(m, Q * H * Q.adjoint());
for (int row = 2; row < size; ++row) {
for (int col = 0; col < row - 1; ++col) {
VERIFY(H(row, col) == (typename MatrixType::Scalar)0);
}
}
}
// Test whether compute() and constructor returns same result
MatrixType A = MatrixType::Random(size, size);
HessenbergDecomposition<MatrixType> cs1;
cs1.compute(A);
HessenbergDecomposition<MatrixType> cs2(A);
VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval());
MatrixType cs1Q = cs1.matrixQ();
MatrixType cs2Q = cs2.matrixQ();
VERIFY_IS_EQUAL(cs1Q, cs2Q);
// Test assertions for when used uninitialized
HessenbergDecomposition<MatrixType> hessUninitialized;
VERIFY_RAISES_ASSERT(hessUninitialized.matrixH());
VERIFY_RAISES_ASSERT(hessUninitialized.matrixQ());
VERIFY_RAISES_ASSERT(hessUninitialized.householderCoefficients());
VERIFY_RAISES_ASSERT(hessUninitialized.packedMatrix());
// TODO: Add tests for packedMatrix() and householderCoefficients()
}
EIGEN_DECLARE_TEST(hessenberg) {
CALL_SUBTEST_1((hessenberg<std::complex<double>, 1>()));
CALL_SUBTEST_2((hessenberg<std::complex<double>, 2>()));
CALL_SUBTEST_3((hessenberg<std::complex<float>, 4>()));
CALL_SUBTEST_4((hessenberg<float, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_5((hessenberg<std::complex<double>, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
// Test problem size constructors
CALL_SUBTEST_6(HessenbergDecomposition<MatrixXf>(10));
}