| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| template <typename MatrixType> |
| void householder(const MatrixType& m) { |
| static bool even = true; |
| even = !even; |
| /* this test covers the following files: |
| Householder.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; |
| |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; |
| |
| Matrix<Scalar, internal::max_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime), 1> |
| _tmp((std::max)(rows, cols)); |
| Scalar* tmp = &_tmp.coeffRef(0, 0); |
| |
| Scalar beta; |
| RealScalar alpha; |
| EssentialVectorType essential; |
| |
| VectorType v1 = VectorType::Random(rows), v2; |
| v2 = v1; |
| v1.makeHouseholder(essential, beta, alpha); |
| v1.applyHouseholderOnTheLeft(essential, beta, tmp); |
| VERIFY_IS_APPROX(v1.norm(), v2.norm()); |
| if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows - 1).norm(), v1.norm()); |
| v1 = VectorType::Random(rows); |
| v2 = v1; |
| v1.applyHouseholderOnTheLeft(essential, beta, tmp); |
| VERIFY_IS_APPROX(v1.norm(), v2.norm()); |
| |
| // reconstruct householder matrix: |
| SquareMatrixType id, H1, H2; |
| id.setIdentity(rows, rows); |
| H1 = H2 = id; |
| VectorType vv(rows); |
| vv << Scalar(1), essential; |
| H1.applyHouseholderOnTheLeft(essential, beta, tmp); |
| H2.applyHouseholderOnTheRight(essential, beta, tmp); |
| VERIFY_IS_APPROX(H1, H2); |
| VERIFY_IS_APPROX(H1, id - beta * vv * vv.adjoint()); |
| |
| MatrixType m1(rows, cols), m2(rows, cols); |
| |
| v1 = VectorType::Random(rows); |
| if (even) v1.tail(rows - 1).setZero(); |
| m1.colwise() = v1; |
| m2 = m1; |
| m1.col(0).makeHouseholder(essential, beta, alpha); |
| m1.applyHouseholderOnTheLeft(essential, beta, tmp); |
| VERIFY_IS_APPROX(m1.norm(), m2.norm()); |
| if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1, 0, rows - 1, cols).norm(), m1.norm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0, 0)), numext::real(m1(0, 0))); |
| VERIFY_IS_APPROX(numext::real(m1(0, 0)), alpha); |
| |
| v1 = VectorType::Random(rows); |
| if (even) v1.tail(rows - 1).setZero(); |
| SquareMatrixType m3(rows, rows), m4(rows, rows); |
| m3.rowwise() = v1.transpose(); |
| m4 = m3; |
| m3.row(0).makeHouseholder(essential, beta, alpha); |
| m3.applyHouseholderOnTheRight(essential.conjugate(), beta, tmp); |
| VERIFY_IS_APPROX(m3.norm(), m4.norm()); |
| if (rows >= 2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0, 1, rows, rows - 1).norm(), m3.norm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0, 0)), numext::real(m3(0, 0))); |
| VERIFY_IS_APPROX(numext::real(m3(0, 0)), alpha); |
| |
| // test householder sequence on the left with a shift |
| |
| Index shift = internal::random<Index>(0, std::max<Index>(rows - 2, 0)); |
| Index brows = rows - shift; |
| m1.setRandom(rows, cols); |
| HBlockMatrixType hbm = m1.block(shift, 0, brows, cols); |
| HouseholderQR<HBlockMatrixType> qr(hbm); |
| m2 = m1; |
| m2.block(shift, 0, brows, cols) = qr.matrixQR(); |
| HCoeffsVectorType hc = qr.hCoeffs().conjugate(); |
| HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc); |
| hseq.setLength(hc.size()).setShift(shift); |
| VERIFY(hseq.length() == hc.size()); |
| VERIFY(hseq.shift() == shift); |
| |
| MatrixType m5 = m2; |
| m5.block(shift, 0, brows, cols).template triangularView<StrictlyLower>().setZero(); |
| VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly |
| m3 = hseq; |
| VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying |
| |
| SquareMatrixType hseq_mat = hseq; |
| SquareMatrixType hseq_mat_conj = hseq.conjugate(); |
| SquareMatrixType hseq_mat_adj = hseq.adjoint(); |
| SquareMatrixType hseq_mat_trans = hseq.transpose(); |
| SquareMatrixType m6 = SquareMatrixType::Random(rows, rows); |
| VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj); |
| VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj); |
| VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans); |
| VERIFY_IS_APPROX(hseq * m6, hseq_mat * m6); |
| VERIFY_IS_APPROX(hseq.adjoint() * m6, hseq_mat_adj * m6); |
| VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6); |
| VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6); |
| VERIFY_IS_APPROX(m6 * hseq, m6 * hseq_mat); |
| VERIFY_IS_APPROX(m6 * hseq.adjoint(), m6 * hseq_mat_adj); |
| VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj); |
| VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans); |
| |
| // test householder sequence on the right with a shift |
| |
| TMatrixType tm2 = m2.transpose(); |
| HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc); |
| rhseq.setLength(hc.size()).setShift(shift); |
| VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly |
| m3 = rhseq; |
| VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying |
| } |
| |
| template <typename MatrixType> |
| void householder_update(const MatrixType& m) { |
| // This test is covering the internal::householder_qr_inplace_update function. |
| // At time of writing, there is not public API that exposes this update behavior directly, |
| // so we are testing the internal implementation. |
| |
| const Index rows = m.rows(); |
| const Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; |
| typedef Matrix<Scalar, Dynamic, 1> VectorX; |
| |
| VectorX tmpOwner(cols); |
| Scalar* tmp = tmpOwner.data(); |
| |
| // The matrix to factorize. |
| const MatrixType A = MatrixType::Random(rows, cols); |
| |
| // matQR and hCoeffs will hold the factorization of A, |
| // built by a sequence of calls to `update`. |
| MatrixType matQR(rows, cols); |
| HCoeffsVectorType hCoeffs(cols); |
| |
| // householder_qr_inplace_update should be able to build a QR factorization one column at a time. |
| // We verify this by starting with an empty factorization and 'updating' one column at a time. |
| // After each call to update, we should have a QR factorization of the columns presented so far. |
| |
| const Index size = (std::min)(rows, cols); // QR can only go up to 'size' b/c that's full rank. |
| for (Index k = 0; k != size; ++k) { |
| // Make a copy of the column to prevent any possibility of 'leaking' other parts of A. |
| const VectorType newColumn = A.col(k); |
| internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp); |
| |
| // Verify Property: |
| // matQR.leftCols(k+1) and hCoeffs.head(k+1) hold |
| // a QR factorization of A.leftCols(k+1). |
| // This is the fundamental guarantee of householder_qr_inplace_update. |
| { |
| const MatrixX matQR_k = matQR.leftCols(k + 1); |
| const VectorX hCoeffs_k = hCoeffs.head(k + 1); |
| MatrixX R = matQR_k.template triangularView<Upper>(); |
| MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R; |
| VERIFY_IS_APPROX(QxR, A.leftCols(k + 1)); |
| } |
| |
| // Verify Property: |
| // A sequence of calls to 'householder_qr_inplace_update' |
| // should produce the same result as 'householder_qr_inplace_unblocked'. |
| // This is a property of the current implementation. |
| // If these implementations diverge in the future, |
| // then simply delete the test of this property. |
| { |
| MatrixX QR_at_once = A.leftCols(k + 1); |
| VectorX hCoeffs_at_once(k + 1); |
| internal::householder_qr_inplace_unblocked(QR_at_once, hCoeffs_at_once, tmp); |
| VERIFY_IS_APPROX(QR_at_once, matQR.leftCols(k + 1)); |
| VERIFY_IS_APPROX(hCoeffs_at_once, hCoeffs.head(k + 1)); |
| } |
| } |
| |
| // Verify Property: |
| // We can go back and update any column to have a new value, |
| // and get a QR factorization of the columns up to that one. |
| { |
| const Index k = internal::random<Index>(0, size - 1); |
| VectorType newColumn = VectorType::Random(rows); |
| internal::householder_qr_inplace_update(matQR, hCoeffs, newColumn, k, tmp); |
| |
| const MatrixX matQR_k = matQR.leftCols(k + 1); |
| const VectorX hCoeffs_k = hCoeffs.head(k + 1); |
| MatrixX R = matQR_k.template triangularView<Upper>(); |
| MatrixX QxR = householderSequence(matQR_k, hCoeffs_k.conjugate()) * R; |
| VERIFY_IS_APPROX(QxR.leftCols(k), A.leftCols(k)); |
| VERIFY_IS_APPROX(QxR.col(k), newColumn); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(householder) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(householder(Matrix<double, 2, 2>())); |
| CALL_SUBTEST_2(householder(Matrix<float, 2, 3>())); |
| CALL_SUBTEST_3(householder(Matrix<double, 3, 5>())); |
| CALL_SUBTEST_4(householder(Matrix<float, 4, 4>())); |
| CALL_SUBTEST_5(householder( |
| MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_6(householder( |
| MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(householder( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_8(householder(Matrix<double, 1, 1>())); |
| |
| CALL_SUBTEST_9(householder_update(Matrix<double, 3, 5>())); |
| CALL_SUBTEST_9(householder_update(Matrix<float, 4, 2>())); |
| CALL_SUBTEST_9(householder_update( |
| MatrixXcf(internal::random<Index>(1, EIGEN_TEST_MAX_SIZE), internal::random<Index>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| } |