blob: fccc2077845778223ad8ca492e1899f0b631ff39 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// #define EIGEN_DONT_VECTORIZE
// #define EIGEN_MAX_ALIGN_BYTES 0
#include "sparse_solver.h"
#include <Eigen/IterativeLinearSolvers>
template <typename T, typename I_>
void test_incomplete_cholesky_T() {
typedef SparseMatrix<T, 0, I_> SparseMatrixType;
ConjugateGradient<SparseMatrixType, Lower, IncompleteCholesky<T, Lower, AMDOrdering<I_> > > cg_illt_lower_amd;
ConjugateGradient<SparseMatrixType, Lower, IncompleteCholesky<T, Lower, NaturalOrdering<I_> > > cg_illt_lower_nat;
ConjugateGradient<SparseMatrixType, Upper, IncompleteCholesky<T, Upper, AMDOrdering<I_> > > cg_illt_upper_amd;
ConjugateGradient<SparseMatrixType, Upper, IncompleteCholesky<T, Upper, NaturalOrdering<I_> > > cg_illt_upper_nat;
ConjugateGradient<SparseMatrixType, Upper | Lower, IncompleteCholesky<T, Lower, AMDOrdering<I_> > > cg_illt_uplo_amd;
CALL_SUBTEST(check_sparse_spd_solving(cg_illt_lower_amd));
CALL_SUBTEST(check_sparse_spd_solving(cg_illt_lower_nat));
CALL_SUBTEST(check_sparse_spd_solving(cg_illt_upper_amd));
CALL_SUBTEST(check_sparse_spd_solving(cg_illt_upper_nat));
CALL_SUBTEST(check_sparse_spd_solving(cg_illt_uplo_amd));
}
template <int>
void bug1150() {
// regression for bug 1150
for (int N = 1; N < 20; ++N) {
Eigen::MatrixXd b(N, N);
b.setOnes();
Eigen::SparseMatrix<double> m(N, N);
m.reserve(Eigen::VectorXi::Constant(N, 4));
for (int i = 0; i < N; ++i) {
m.insert(i, i) = 1;
m.coeffRef(i, i / 2) = 2;
m.coeffRef(i, i / 3) = 2;
m.coeffRef(i, i / 4) = 2;
}
Eigen::SparseMatrix<double> A;
A = m * m.transpose();
Eigen::ConjugateGradient<Eigen::SparseMatrix<double>, Eigen::Lower | Eigen::Upper,
Eigen::IncompleteCholesky<double> >
solver(A);
VERIFY(solver.preconditioner().info() == Eigen::Success);
VERIFY(solver.info() == Eigen::Success);
}
}
void test_non_spd() {
Eigen::SparseMatrix<double> A(2, 2);
A.insert(0, 0) = 0;
A.insert(1, 1) = 3;
Eigen::IncompleteCholesky<double> solver(A);
// Recover original matrix.
Eigen::MatrixXd M = solver.permutationP().transpose() *
(solver.scalingS().asDiagonal().inverse() *
(solver.matrixL() * solver.matrixL().transpose() -
solver.shift() * Eigen::MatrixXd::Identity(A.rows(), A.cols())) *
solver.scalingS().asDiagonal().inverse()) *
solver.permutationP();
VERIFY_IS_APPROX(A.toDense(), M);
}
EIGEN_DECLARE_TEST(incomplete_cholesky) {
CALL_SUBTEST_1((test_incomplete_cholesky_T<double, int>()));
CALL_SUBTEST_2((test_incomplete_cholesky_T<std::complex<double>, int>()));
CALL_SUBTEST_3((test_incomplete_cholesky_T<double, long int>()));
CALL_SUBTEST_4((bug1150<0>()));
CALL_SUBTEST_4(test_non_spd());
}