| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| // #define EIGEN_DONT_VECTORIZE |
| // #define EIGEN_MAX_ALIGN_BYTES 0 |
| #include "sparse_solver.h" |
| #include <Eigen/IterativeLinearSolvers> |
| |
| template <typename T, typename I_> |
| void test_incomplete_cholesky_T() { |
| typedef SparseMatrix<T, 0, I_> SparseMatrixType; |
| ConjugateGradient<SparseMatrixType, Lower, IncompleteCholesky<T, Lower, AMDOrdering<I_> > > cg_illt_lower_amd; |
| ConjugateGradient<SparseMatrixType, Lower, IncompleteCholesky<T, Lower, NaturalOrdering<I_> > > cg_illt_lower_nat; |
| ConjugateGradient<SparseMatrixType, Upper, IncompleteCholesky<T, Upper, AMDOrdering<I_> > > cg_illt_upper_amd; |
| ConjugateGradient<SparseMatrixType, Upper, IncompleteCholesky<T, Upper, NaturalOrdering<I_> > > cg_illt_upper_nat; |
| ConjugateGradient<SparseMatrixType, Upper | Lower, IncompleteCholesky<T, Lower, AMDOrdering<I_> > > cg_illt_uplo_amd; |
| |
| CALL_SUBTEST(check_sparse_spd_solving(cg_illt_lower_amd)); |
| CALL_SUBTEST(check_sparse_spd_solving(cg_illt_lower_nat)); |
| CALL_SUBTEST(check_sparse_spd_solving(cg_illt_upper_amd)); |
| CALL_SUBTEST(check_sparse_spd_solving(cg_illt_upper_nat)); |
| CALL_SUBTEST(check_sparse_spd_solving(cg_illt_uplo_amd)); |
| } |
| |
| template <int> |
| void bug1150() { |
| // regression for bug 1150 |
| for (int N = 1; N < 20; ++N) { |
| Eigen::MatrixXd b(N, N); |
| b.setOnes(); |
| |
| Eigen::SparseMatrix<double> m(N, N); |
| m.reserve(Eigen::VectorXi::Constant(N, 4)); |
| for (int i = 0; i < N; ++i) { |
| m.insert(i, i) = 1; |
| m.coeffRef(i, i / 2) = 2; |
| m.coeffRef(i, i / 3) = 2; |
| m.coeffRef(i, i / 4) = 2; |
| } |
| |
| Eigen::SparseMatrix<double> A; |
| A = m * m.transpose(); |
| |
| Eigen::ConjugateGradient<Eigen::SparseMatrix<double>, Eigen::Lower | Eigen::Upper, |
| Eigen::IncompleteCholesky<double> > |
| solver(A); |
| VERIFY(solver.preconditioner().info() == Eigen::Success); |
| VERIFY(solver.info() == Eigen::Success); |
| } |
| } |
| |
| void test_non_spd() { |
| Eigen::SparseMatrix<double> A(2, 2); |
| A.insert(0, 0) = 0; |
| A.insert(1, 1) = 3; |
| |
| Eigen::IncompleteCholesky<double> solver(A); |
| |
| // Recover original matrix. |
| Eigen::MatrixXd M = solver.permutationP().transpose() * |
| (solver.scalingS().asDiagonal().inverse() * |
| (solver.matrixL() * solver.matrixL().transpose() - |
| solver.shift() * Eigen::MatrixXd::Identity(A.rows(), A.cols())) * |
| solver.scalingS().asDiagonal().inverse()) * |
| solver.permutationP(); |
| VERIFY_IS_APPROX(A.toDense(), M); |
| } |
| |
| EIGEN_DECLARE_TEST(incomplete_cholesky) { |
| CALL_SUBTEST_1((test_incomplete_cholesky_T<double, int>())); |
| CALL_SUBTEST_2((test_incomplete_cholesky_T<std::complex<double>, int>())); |
| CALL_SUBTEST_3((test_incomplete_cholesky_T<double, long int>())); |
| |
| CALL_SUBTEST_4((bug1150<0>())); |
| CALL_SUBTEST_4(test_non_spd()); |
| } |